Home
Class 12
MATHS
If A=[(0,3),(-7,5)] and I=[(1,0),(0,1)],...

If `A=[(0,3),(-7,5)]` and `I=[(1,0),(0,1)]`, then find 'k' so that `k^(2)=5A-21I`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the question. ### Step 1: Identify the given matrices We have: - Matrix \( A = \begin{pmatrix} 0 & 3 \\ -7 & 5 \end{pmatrix} \) - Identity matrix \( I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) ### Step 2: Calculate \( 5A \) To find \( 5A \), we multiply each element of matrix \( A \) by 5: \[ 5A = 5 \cdot \begin{pmatrix} 0 & 3 \\ -7 & 5 \end{pmatrix} = \begin{pmatrix} 5 \cdot 0 & 5 \cdot 3 \\ 5 \cdot -7 & 5 \cdot 5 \end{pmatrix} = \begin{pmatrix} 0 & 15 \\ -35 & 25 \end{pmatrix} \] ### Step 3: Calculate \( 21I \) Next, we calculate \( 21I \) by multiplying each element of the identity matrix \( I \) by 21: \[ 21I = 21 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 21 & 0 \\ 0 & 21 \end{pmatrix} \] ### Step 4: Calculate \( 5A - 21I \) Now, we subtract \( 21I \) from \( 5A \): \[ 5A - 21I = \begin{pmatrix} 0 & 15 \\ -35 & 25 \end{pmatrix} - \begin{pmatrix} 21 & 0 \\ 0 & 21 \end{pmatrix} = \begin{pmatrix} 0 - 21 & 15 - 0 \\ -35 - 0 & 25 - 21 \end{pmatrix} = \begin{pmatrix} -21 & 15 \\ -35 & 4 \end{pmatrix} \] ### Step 5: Set \( k^2 \) equal to \( 5A - 21I \) We have: \[ k^2 = \begin{pmatrix} -21 & 15 \\ -35 & 4 \end{pmatrix} \] ### Step 6: Calculate the determinant of \( k^2 \) To find \( k \), we need to calculate the determinant of the matrix \( k^2 \): \[ \text{det}(k^2) = (-21)(4) - (15)(-35) = -84 + 525 = 441 \] ### Step 7: Find \( k \) Since \( k^2 = 441 \), we take the square root to find \( k \): \[ k = \sqrt{441} = \pm 21 \] ### Final Answer Thus, the value of \( k \) is \( \pm 21 \). ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d) Long Answer Type Questions II|2 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Short Answer Type Questions|16 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d ) Short Answer Type Questions|20 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

If A=[(3,1),(-1,2)] and I=[(1,0),(0,1)] find 'k' so that A^(2)=5A+kI .

If A=[(3,-2),(4,-2)] and I=[(1,0),(0,1)] , find k so that A^(2)=kA-2I .

If A=[(5,2),(-1,2)] and I=[(1,0),(0,1)] show that : (A-3I)(A-4I)=O

If A = [ (-3 , 2) , (1, -1)] and I = [(1,0) , (0, 1)] , find the scalar k so that A^2 +I = kA .

If A= [{:(2, -5), (0, 1):}]" and I" = [{:(1, 0), (0, 1):}] then find the matrix X such that 4A-2X + I = O.

If A=[{:(2,1),(0,5):}] , find |A^(-1)|

If [(2,1),(7,4)]A[(-3,2),(5,-3)]=[(1,0),(0,1)] then matrix A equals

If A=[{:(1,0),(-1,7):}]" and "B=[{:(0,4),(-1,7):}] , find (3A^(2)-2B+I).

If A=[(2,1),(9,3)] and A^(2)-5A+7I=O , then A^(-1)=

MODERN PUBLICATION-MATRICES-Exercise 3 (d) Long Answer Type Questions I
  1. If A=[3 1-1 2] , show that A^2-5A+7I=O . Use this to find A^4

    Text Solution

    |

  2. Let A ={:[(2,0,1),(2,1,3),(1,-1,0)] and f(x) = x^(2) -5x + 6 , find f(...

    Text Solution

    |

  3. यदि A= [[2,0,1],[2,1,3],[1,-1,0]], तब A^(2) - 3A + 2I का मान ज्ञात क...

    Text Solution

    |

  4. if A=[{:(3,1),(-1,2):}],show that A^(2)-5A+7I=0.

    Text Solution

    |

  5. If M=[(7,5),(2,3)], then verify the equation : M^(2)-10M+11I(2)=O

    Text Solution

    |

  6. If A+l={:[(2,2,3),(3,-1,1),(4,2,2)]:} then show that A^(3)-23A-40l=0

    Text Solution

    |

  7. If A=[1 0 2 0 2 1 2 0 3] , prove that A^3-6A^2+7A+2I=0

    Text Solution

    |

  8. If A=[{:(-1,2),(3,1):}], find f(A), where f(x)=x^(2)-2x+3.

    Text Solution

    |

  9. If A=[(3,1),(-1,2)], then find f (A), where f(x)=x^(2)-5x+7.

    Text Solution

    |

  10. If A=[1 0-1 7] , find k such that A^2-8A+k I=O .

    Text Solution

    |

  11. If A A=[3-2 4-2]and I=[1 0 0 1], find k so that A^2=k A-2I.

    Text Solution

    |

  12. If A=[(0,3),(-7,5)] and I=[(1,0),(0,1)], then find 'k' so that k^(2)=5...

    Text Solution

    |

  13. Solve system of linear equations, using matrix method, x y" "+" "2...

    Text Solution

    |

  14. Let A=[0 1 0 0]show that (a I+b A)^n=a^n I+n a^(n-1)b A, where I is t...

    Text Solution

    |

  15. A matrix X has a+b rows and a+2 columns while the matrix Y has b+1 ...

    Text Solution

    |

  16. Let A=[(-1,-4),(1,3)], prove by Mathematical Induction that A^(n)=[(1-...

    Text Solution

    |

  17. If A=[[costheta,-sintheta],[sintheta,costheta]] then show that A^n = [...

    Text Solution

    |

  18. If A=[costhetaisinthetaisinthetacostheta], then prove by principal of ...

    Text Solution

    |

  19. A trust fund has Rs 30,000 that must be invested in two different t...

    Text Solution

    |

  20. There are 2 families A and B. There are 4 men, 6 women and 2 children ...

    Text Solution

    |