Home
Class 12
MATHS
Express the matrix [(2,4,-6),(7,3,5),(1,...

Express the matrix `[(2,4,-6),(7,3,5),(1,-2,4)]` as a sum of symmetric and a skew - symmetric matrix.

Text Solution

AI Generated Solution

The correct Answer is:
To express the matrix \( A = \begin{pmatrix} 2 & 4 & -6 \\ 7 & 3 & 5 \\ 1 & -2 & 4 \end{pmatrix} \) as a sum of a symmetric matrix \( P \) and a skew-symmetric matrix \( Q \), we can use the following formulas: 1. The symmetric part \( P \) is given by: \[ P = \frac{1}{2}(A + A^T) \] 2. The skew-symmetric part \( Q \) is given by: \[ Q = \frac{1}{2}(A - A^T) \] ### Step 1: Find the transpose of matrix \( A \) The transpose of matrix \( A \), denoted as \( A^T \), is obtained by swapping rows with columns: \[ A^T = \begin{pmatrix} 2 & 7 & 1 \\ 4 & 3 & -2 \\ -6 & 5 & 4 \end{pmatrix} \] ### Step 2: Calculate the symmetric matrix \( P \) Now, we can calculate \( P \) using the formula: \[ P = \frac{1}{2}(A + A^T) \] Substituting the values of \( A \) and \( A^T \): \[ P = \frac{1}{2} \left( \begin{pmatrix} 2 & 4 & -6 \\ 7 & 3 & 5 \\ 1 & -2 & 4 \end{pmatrix} + \begin{pmatrix} 2 & 7 & 1 \\ 4 & 3 & -2 \\ -6 & 5 & 4 \end{pmatrix} \right) \] Calculating the sum: \[ A + A^T = \begin{pmatrix} 2 + 2 & 4 + 7 & -6 + 1 \\ 7 + 4 & 3 + 3 & 5 - 2 \\ 1 - 6 & -2 + 5 & 4 + 4 \end{pmatrix} = \begin{pmatrix} 4 & 11 & -5 \\ 11 & 6 & 3 \\ -5 & 3 & 8 \end{pmatrix} \] Now, divide by 2: \[ P = \frac{1}{2} \begin{pmatrix} 4 & 11 & -5 \\ 11 & 6 & 3 \\ -5 & 3 & 8 \end{pmatrix} = \begin{pmatrix} 2 & \frac{11}{2} & -\frac{5}{2} \\ \frac{11}{2} & 3 & \frac{3}{2} \\ -\frac{5}{2} & \frac{3}{2} & 4 \end{pmatrix} \] ### Step 3: Calculate the skew-symmetric matrix \( Q \) Now, we can calculate \( Q \) using the formula: \[ Q = \frac{1}{2}(A - A^T) \] Substituting the values of \( A \) and \( A^T \): \[ Q = \frac{1}{2} \left( \begin{pmatrix} 2 & 4 & -6 \\ 7 & 3 & 5 \\ 1 & -2 & 4 \end{pmatrix} - \begin{pmatrix} 2 & 7 & 1 \\ 4 & 3 & -2 \\ -6 & 5 & 4 \end{pmatrix} \right) \] Calculating the difference: \[ A - A^T = \begin{pmatrix} 2 - 2 & 4 - 7 & -6 - 1 \\ 7 - 4 & 3 - 3 & 5 + 2 \\ 1 + 6 & -2 - 5 & 4 - 4 \end{pmatrix} = \begin{pmatrix} 0 & -3 & -7 \\ 3 & 0 & 7 \\ 7 & -7 & 0 \end{pmatrix} \] Now, divide by 2: \[ Q = \frac{1}{2} \begin{pmatrix} 0 & -3 & -7 \\ 3 & 0 & 7 \\ 7 & -7 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\frac{3}{2} & -\frac{7}{2} \\ \frac{3}{2} & 0 & \frac{7}{2} \\ \frac{7}{2} & -\frac{7}{2} & 0 \end{pmatrix} \] ### Final Result Thus, we can express the matrix \( A \) as: \[ A = P + Q \] Where: \[ P = \begin{pmatrix} 2 & \frac{11}{2} & -\frac{5}{2} \\ \frac{11}{2} & 3 & \frac{3}{2} \\ -\frac{5}{2} & \frac{3}{2} & 4 \end{pmatrix} \] And: \[ Q = \begin{pmatrix} 0 & -\frac{3}{2} & -\frac{7}{2} \\ \frac{3}{2} & 0 & \frac{7}{2} \\ \frac{7}{2} & -\frac{7}{2} & 0 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Revision Exercise|10 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING (True/false)|2 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Miscellaneous Exercise on Chapter (3)|14 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Expess the matrix A=[{:(2,0,-4),(-3,1,5),(4,-2,3):}] as a sum of symmetic and skew symmetric matrices.

Express the matrix A={:[(2,-3,4),(-1,4,3),(1,-2,3)]:} as the sum of a symmetric and a skew symmetric matrix

Express the matrix A=[{:(-1,5,1),(2,3,4),(7,0,9):}] as the sum of a symmetric and a skew-symmetric matrix.

Express the matrix B=[2,-2,-4-1,3,41,-2,-3] as the sum of a symmetric and a skew symmetric matrix.

Express the matrix B= [{:(,2,-2,),(,-1,3,):}] as the sum of a symmetric and a skew symmetric matrix.

Express the matrix A=[{:(2,3),(-1,4):}] as the sum of a symmetric matrix and a skew-symmetric matrix.

Express the matrix A=[[3,2,3],[4,5,3],[2,4,5]] as the sum of symmetric and a skew symmetric matrix.

Express the matrix A=[{:(3,-4),(1,-1):}] as the sum of a symmetric matrix and a skew-symmetric matrix.

Express A=[(1,-1,2),(2,1,3),(4,-1,5)] as a sum of a symmetric and a skew symmetric matrix

Express the matrix [{:(2 ,1),(3,4):}] as the sum of a symmetric and a skew-symmetric matrix.