Home
Class 12
MATHS
Compute [(a,0),(a,0)][(0,0),(0,0)]....

Compute `[(a,0),(a,0)][(0,0),(0,0)]`.

Text Solution

AI Generated Solution

The correct Answer is:
To compute the multiplication of the matrices \(\begin{pmatrix} a & 0 \\ a & 0 \end{pmatrix}\) and \(\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\), we will follow the standard procedure for matrix multiplication. ### Step-by-Step Solution: 1. **Identify the matrices**: - Let \( A = \begin{pmatrix} a & 0 \\ a & 0 \end{pmatrix} \) - Let \( B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \) 2. **Check the dimensions**: - Matrix \( A \) is of size \( 2 \times 2 \) (2 rows and 2 columns). - Matrix \( B \) is also of size \( 2 \times 2 \). - Since the number of columns in \( A \) is equal to the number of rows in \( B \), we can multiply these matrices. 3. **Set up the resultant matrix**: - The resultant matrix \( C \) will also be of size \( 2 \times 2 \). - Let \( C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} \) 4. **Calculate each element of the resultant matrix**: - **Element \( c_{11} \)**: \[ c_{11} = (a \cdot 0) + (0 \cdot 0) = 0 + 0 = 0 \] - **Element \( c_{12} \)**: \[ c_{12} = (a \cdot 0) + (0 \cdot 0) = 0 + 0 = 0 \] - **Element \( c_{21} \)**: \[ c_{21} = (a \cdot 0) + (0 \cdot 0) = 0 + 0 = 0 \] - **Element \( c_{22} \)**: \[ c_{22} = (a \cdot 0) + (0 \cdot 0) = 0 + 0 = 0 \] 5. **Construct the resultant matrix**: - Thus, the resultant matrix \( C \) is: \[ C = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] ### Final Result: The result of the multiplication \(\begin{pmatrix} a & 0 \\ a & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\) is: \[ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise COMPETITION FILE (Questions from JEE Main)|8 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING (Fill in the blank)|1 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Compute : [(1,0),(0,1)][(2,-1),(1,2)]

If A=[(0,2),(0,3)] and B =[(2,5),(0,0)] then AB =[(0,0),(0,0)]

The point equidistant from the O(0,0,0),A(a,0,0),B(0,b,0) and C(0,0,c) has the coordinates

What are corrdinates of the point equidistant from the points (a,0,0),(0,a,0),(0,0,a) and (0,0,0) ?

Let A=[(a,0, 0),( 0,a,0),( 0, 0,a)] , then A^n is equal to [(a^n,0, 0),( 0,a^n,0),(0, 0,a)] (b) [(a^n,0 ,0),( 0,a,0 ),(0, 0,a)] (c) [(a^n,0, 0),( 0,a^n,0),( 0, 0,a^n)] (d) [(n a,0, 0),( 0,n a,0 ),(0, 0,n a)]

Let A=[(a,0,0),(0,a,0),(0,0,a)] then A^2 is equal to