Home
Class 12
MATHS
If l^ ( r) (x) means log log log ….x (lo...

If `l^ ( r) (x)` means log log log ….x (log being repeated r times ) , then `int [x l (x)l^(2)(x)l^(3)(x)…..l^( r) (x)]^(-1)dx` equals :

A

`l^( r) (x)+c`

B

`l^ (r+1) (x)+c`

C

`(l^(r+1)(x))/(r+1)+c`

D

None of these.

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGERALS

    MODERN PUBLICATION|Exercise MCQs Multiple Choice Questions Level-II|20 Videos
  • INDEFINITE INTEGERALS

    MODERN PUBLICATION|Exercise Latest Questions From AIEEE/JEE Examinations|5 Videos
  • HYPERBOLA

    MODERN PUBLICATION|Exercise Recent Competitive Questions|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos

Similar Questions

Explore conceptually related problems

int(log(x^(2)))/(x)dx=

int dx /(x(log x)^(3)) =

int dx/(log(x^(x))[logx+1])=

int log x dx=

The integral int_(-1//2)^(1//2) ([x] + l_n ((1 + x)/(1 - x)))dx equals :

int (1)/(x(log x)^m) dx

Find int x log x dx .

If int (1)/(f(x))dx=log [ f(x)]^(2)+c , then f(x) is equal to:

int [ log (log x) + (log x)^(-2)] dx is :