Home
Class 12
MATHS
int(sin2x)/(2cos^(2)x+3sin^(2)x)dx equal...

`int(sin2x)/(2cos^(2)x+3sin^(2)x)dx` equals

A

`log(2+sinx)+C`

B

`log(2+cos^(2)x)+C`

C

`log(2+sin^(2)x)+C`

D

`log(2+cosx)+C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGERALS

    MODERN PUBLICATION|Exercise MCQs Multiple Choice Questions Level-II|20 Videos
  • INDEFINITE INTEGERALS

    MODERN PUBLICATION|Exercise Latest Questions From AIEEE/JEE Examinations|5 Videos
  • HYPERBOLA

    MODERN PUBLICATION|Exercise Recent Competitive Questions|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos

Similar Questions

Explore conceptually related problems

int(sin2x)/(sin^(2)x+2cos^(2)x)dx=

int(sin 2x)/(sin^(2)x + 2 cos^(2)x) dx =

int(1)/(sin^(2)x cos^(2)x)dx=

int1/(cos 2x +sin^(2)x) dx =

int(sin(2x)dx)/(1+cos^(2)x)=

int (sin 2x)/(1 + cos^(2) x) dx =

The value of (cos^(4)x+cos^(2)x sin^(2) x + sin^(2)x)/(cos^(2)x+ sin^(2) x cos^(2) x + sin^(4)x) is ____________

int_0^(pi/2) (sin^(3)x)/(cos^(3)x+sin^(3)x) dx =