Home
Class 12
MATHS
In the integral int(cos 8x+1)/(cot 2x...

In the integral
`int(cos 8x+1)/(cot 2x-tan 2x)dx=A cos 8x+k`, where k is an arbitrary constant,then A is equal to

A

`-(1)/(16)`

B

`(1)/(8)`

C

`(1)/(16)`

D

`-(1)/(8)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGERALS

    MODERN PUBLICATION|Exercise Latest Questions From AIEEE/JEE Examinations|5 Videos
  • HYPERBOLA

    MODERN PUBLICATION|Exercise Recent Competitive Questions|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos

Similar Questions

Explore conceptually related problems

int (cos 4x-1)/(cot x-tanx)dx equals :

If in(cos8x+1)/(tan 2x-cot 2x) dx =a cos 8x +c then a=

int (cos 2x-1)/(cos 2x+1) dx =

The integral int (sec^(2) x)/((sec x+tan x)^(9//2))dx equals : (for some arbitrary constant k)

int cos x. log (tan (x/2)) dx =

int (dx)/(cos x-sin x) is equal to :

If the integral int (5tan x)/(tanx-2)dx= x+a l_(n) |sinx-2cos x|+k , then a is equal to :

int (sin 2x)/(1 + cos^(2) x) dx =