Home
Class 12
MATHS
Let g (x)= int(0)^(x) f(t) dy=t , where ...

Let `g (x)= int_(0)^(x) f(t) dy=t` , where f is such that ` (1)/(2) le f (t) le 1` for ` tin [0,1] and 0 le f (t) le (1)/(2) ` for ` t in [1 ,2]`. then . `g (2)` satisfies the inequality

A

`-(3)/(2)leg (2) lt(1)/(2)`

B

` 0leg (2) lt2`

C

`(3)/(2) lt g (2) le 5//2`

D

`2lt g (2) lt 4`

Text Solution

Verified by Experts

The correct Answer is:
B

Given , g (x) `= int_(0)^(x)f(t) dt`
` rArr g (2) = int_(0)^(2) f (t) dt = int_(0)^(1)f(t)dt + int_(1)^(2)f(t)dt`
Now , `(1)/(2) le f (t) le 1 " for" t in [0,1]`
We get `int_(0)^(1)(1)/(2)dt leint_(0)^(1)f(t)dt le int_(0)^(1)1 dt`
`rArr (1)/(2)leint_(0)^(1)f (t) dt le 1` . . . (i)
Again , `0le f (t) le (1)/(2) " for " t in [1,2]` . . . (ii)
`rArr int_(1)^(2)0 dt le int_(1)^(2) f (t) dtle int _(1)^(2) dt`
`rArr 0 le int_(1)^(2) f (t) dt le (1)/(2)`
From Eqs . (i) and (ii) , we get
`(1)/(2)le int_(0)^(1)f (t) dt + int_(1)^(2) f (t) dt le (3)/(2)`
` rArr (1)/(2) le g (2) le (3)/(2)`
` rArr 0leg (2) lt 2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise ESTIMATION, GAMMA FUNCTION AND DERIVATIVE OF INDEFINITE INTEGRAL|22 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise LIMITS AS THE SUM|6 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise LIMITS AS THE SUM|6 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • DIFFERENTIAL EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 APPLICATIONS OF HOMOGENEOUS DIFFERENTIAL EQUATIONS <br> ANALYTICAL & DESCRIPTIVE QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

Let g(x)=int_(0)^(x)f(t).dt, where f is such that (1)/(2)<=f(t)<=1 for t in[0,1] and 0<=f(t)<=(1)/(2) for t in[1,2] .Then g(2) satisfies the inequality

Let g(x)=int_(0)^(x)f(t)dt , where f is such that 1/2lef(t)le1 , for tepsilon[0,1] and 0lef(t)le1/2 , for tepsilon[1,2] . Then prove that 1/2leg(2)le3/2 .

Let g(x)=int_(0)^(x) f(t) dt , where f is continuous function in [0,3] such that 1/3 le f(t) le 1 for all t in [0,1] and 0 le f(t) le 1/2 for all tin (1,3] . The largest possible interval in which g(3) lies is:

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let g(x)= f(x) +f'(1-x) and f''(x) lt 0 ,0 le x le 1 Then

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

If f(x) =int_(x)^(x^2) (t-1)dt, 1 le x le 2 then the greatest value of phi (x) , is