Home
Class 12
MATHS
lim(ntooo) ((n)/(n^(2)+1^(2))+(n)/(n^(2)...

`lim_(ntooo) ((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+(n)/(n^(2)+3^(2))+. . . +(1)/(5n))` is equal to

A

`tan^(-1) (3)`

B

`tan^(-1) (2)`

C

`pi//4`

D

`pi//2`

Text Solution

Verified by Experts

The correct Answer is:
B

Clearly
`underset( n to oo)(lim)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+(n)/(n^(2)+3^(2))+ . . . +(1)/(5n))`
`= underset(n to oo)(lim)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+(n)/(n^(2)+3^(2))+ . . . + (n)/(n^(2)+(2n)^(2)))`
`=underset(n to oo)(lim)sum_(r=1)^(2n)(n)/(n^(2)+r^(2))`
`=underset(n to oo)(lim)sum_(r=1)^(2n)(1)/(1+((r)/(n))^(2))*(1)/(n)=int_(0)^(2)(dx)/(1+x^(2))`
`[:' underset(n to oo)(lim)sum_(r=1)^(pn)(1)/(n)f((r)/(n))=int_(0)^(p)f(x)dx]`
`=[tan^(-1)x]_(0)^(2)=tan^(-1)2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise ESTIMATION, GAMMA FUNCTION AND DERIVATIVE OF INDEFINITE INTEGRAL|22 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • DIFFERENTIAL EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 APPLICATIONS OF HOMOGENEOUS DIFFERENTIAL EQUATIONS <br> ANALYTICAL & DESCRIPTIVE QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

If L=lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+(n)/(n^(2)+3^(2))+....+(1)/(5n)) then the value of tan L=

lim_(n rarr oo) [(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+(n+3)/(n^(2)+3^(2))+.....+(1)/(n)]

lim_(n to oo ) {(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+ (n)/(n^(2)+n^(2))} is equal to

lim_(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

The value of lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))] is :

lim_(ntooo)(n-sqrt(n^(2)+n))

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

lim_ (n rarr oo) ((n) / (n ^ (2) +1) + (n) / (n ^ (2) +2) + (n) / (n ^ (2) +3) +. .. (n) / (n ^ (2) + n))

lim_(ntooo) ((n!)^(1//n))/(n) equals