Home
Class 12
MATHS
lim(n tooo) (((n+1)(n+2) . . . 3 n)/(n^...

`lim_(n tooo) (((n+1)(n+2) . . . 3 n)/(n^(2n)))^(1//n)` is equal to

A

`(18)/(e^(4))`

B

`(27)/(e^(2))`

C

`(9)/(e^(2))`

D

3 log 3 -2

Text Solution

Verified by Experts

The correct Answer is:
B

Let `l=underset(n to oo)(lim)(((n+1)*(n+2). . . (3n))/(n^(2n)))^(1/n)`
`=underset(n to oo)(lim)(((n+1)*(n+2). . . (n +2n))/(n^(2n)))^(1/n)`
`=underset(n tooo)(lim)(((n +1)/(n))((n +2)/(n)) . . .((n +2n)/(n)))^(1/n)`
Taking log on both sides , we get
`log l = underset(n tooo)(lim)(1)/(n)[ log{(1+(1)/(n))(1+(2)/(n)) . . .(1+(2n)/(n))}]`
`rArr log l = underset(n tooo)(lim)(1)/(n)`
`[ log(1+(1)/(n))+log(1+(2)/(n))+ . . . + log(1+(2n)/(n))]`
`rArr log l =underset(n tooo)(lim) (1)/(n) sum _(r=1)^(2n)log(1+(r)/(n))`
` rArr log l=int_(0)^(2)log(1+x)dx`
`rArrlog l= [ log (1+x)*x-int(1)/(1+x)*dx]_(0)^(2)`
`rArr logl=[ log (1+x)*x]_(0)^(2)- int_(0)^(2)(x+1-1)/(1+x)dx`
`rArrlog l =2*log 3- int_(0)^(2)(1-(1)/(1+x))dx`
`rArr log l =2* log3-[x-log|1+x|]_(0)^(2)` `rArrlog l =2 *log 3 - [2-log3]`
`rArr log l = 3 * log 3 -2`
`rArr log l = log 27 -2`
`:. l = e^(log27-2)=27.e^(-2)=(27)/(e^(2))`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise ESTIMATION, GAMMA FUNCTION AND DERIVATIVE OF INDEFINITE INTEGRAL|22 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • DIFFERENTIAL EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 APPLICATIONS OF HOMOGENEOUS DIFFERENTIAL EQUATIONS <br> ANALYTICAL & DESCRIPTIVE QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr infty ) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)is equal to

lim_(n to oo) (1+(1+(1)/(2)+………+(1)/(n))/(n^(2)))^(n) is equal to :

lim_(n to oo) (3^(n)+4^(n))^(1//n) is equal to

lim_(n to oo) " " sum_(r=2n+1)^(3n) (n)/(r^(2)-n^(2)) is equal to

The value of lim_(n rarr infty) (1)/(n) {(n+)(n+2)(n+3)…(n+n)}^(1//n) is equal to

lim_(n rarr oo) ((sin(n))/(n^(2))+log((en+1)/(n+e))) ^(n) is equal to

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

lim_(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to