Home
Class 12
MATHS
For a in R ( the set of all real numbe...

For ` a in R` ( the set of all real numbers) , `a ne-1,lim_(ntooo) ((1^(a)+2^(a) + . . . +n^(a)))/((n+1)^(a-1)[(na+1)+(na+2) + . . . +(na+n)])=(1)/(60)`. Then, `a` is equal to

A

5

B

7

C

`(-15)/(2)`

D

`(-17)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B, D

PLAN Converting Infinite series into definite Integral I .e. `underset(n tooo)(lim)(h(n))/(n)`
` underset( n tooo)(lim)sum_(r =g(n))^(h(n))f ((r)/(n))= intf (x)dx`
`underset(n tooo)(lim) (g(n))/(n)` where , `(r)/(n)` replaced with integral.
Here, `underset(n tooo)(lim)(1^(a)+2^(a)+ . . . +n^(a))/((n+1)^(a^(-1)){(na+1)+(na+2)+ . . . +(na+n)})=(1)/(60)`
`rArrunderset(ntooo)(lim)(sum_(n =1)^(n)r^(a))/((n +1)^(a-1)*[n^(2)a+(n(n+1))/(2)])=(1)/(60)`
`rArr underset(n tooo)(lim)(2sum_(r=1)^(n)((r)/(n))^(a))/((1+(1)/(n))^(a-1)*(2na+n+1))=(1)/(60)`
`rArr underset(n tooo)(lim)(1)/(n)(2sum_(r=1)^(n)((r)/(n))^(a))underset(ntoo)(lim)(1)/((1+(1)/(n))^(a-1)(2a+1+(1)/(n)))=(1)/(60)`
`rArr 2 int_(0)^(1)(x^(a))dx*(1)/(1*(2a+1))=(1)/(60)`
`rArr (2*[x^(a+1)]_(0)^(1))/((2a+1)*(a+1))=(1)/(60)`
`:. (2)/((2a+1)(a+1))=(1)/(60)rArr(2a+1)(a+1)=120`
`rArr 2a^(2)+3a+1-120=0rArr2a^(2)+3a-119=0`
`rArr (2a +17)(a-7)=0rArra=7, (-17)/(2)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise ESTIMATION, GAMMA FUNCTION AND DERIVATIVE OF INDEFINITE INTEGRAL|22 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • DIFFERENTIAL EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 APPLICATIONS OF HOMOGENEOUS DIFFERENTIAL EQUATIONS <br> ANALYTICAL & DESCRIPTIVE QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

For a in R (the set of all real numbers),a!=-1)(lim)_(n rarr oo)((1^(a)+2^(a)++n^(a))/((n+1)^(a-1)[(na+1)+(na+2)+......(na+n)])=(1)/(60) Then a=(a)5 (b) 7(c)(-15)/(2) (d) (-17)/(2)

Find a for which lim_ (n rarr oo) (1 ^ (a) + 2 ^ (a) + 3 ^ (a) + ... + n ^ (a)) / ((n + 1) ^ (a- 1) [(na + 1) + (na + 2) + ... + (na + n)]) = (1) / (60)

Evaluate lim_(ntooo) (1^(3)+2^(3)+3^(3)+...+n^(3))/(sqrt(4n^(8)+1)).

lim_(ntooo) ((n!)^(1//n))/(n) equals

Show tha , lim_(ntooo) ((1)/( n +1)+(1)/( n +2)+ . . . +(1)/( 6 n))= log 6 .

lim_(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

lim_(ntooo)((2n^(3))/(2n^(2)+3)+(1-5n^(2))/(5n+1)) is equal to

The value of the limit lim _( n to oo) [(1)/(na) + (1)/( na +1) + (1)/( na +2) +.....+ (1)/( nb) ] is