Home
Class 12
MATHS
Let Sn=sum(k=0)^n n/(n^2+k n+k^2) and ...

Let `S_n=sum_(k=0)^n n/(n^2+k n+k^2) and T_n=sum_(k=0)^(n-1)n/(n^2+k n+k^2)`,for `n=1,2,3,.......,` then

A

`S_(n)lt(pi)/(3sqrt(3))`

B

`T_(n)lt(pi)/(3sqrt(3))`

C

`T_(n)lt(pi)/(2sqrt(2))`

D

`T_(n)gt(pi)/(3sqrt(3))`

Text Solution

Verified by Experts

The correct Answer is:
A, D

Given , `S_(n)=sum_(k=n)^(n)(n)/(n^(2)+kn+k^(2))`
`=sum_(k=0)^(1)(1)/(n) *((1)/(1+(k)/(n)+(k^(2))/(n^(2))))ltunderset(n tooo)(lim)sum_(k=0)^(n)(1)/(n)((1)/(1+(k)/(n)+((k)/(n))^(2)))`
`=int_(0)^(1)(1)/(1+x+x^(2))dx`
`= [(2)/(sqrt(3))tan^(-1)((2)/(sqrt(3))(x+(1)/(2)))]_(0)^(1)`
` = (2)/(sqrt(3))*((pi)/(3)-(pi)/(6))=(pi)/(3sqrt(3))i.e S_(n)lt(pi)/(3sqrt(3))`
Similarly , `T_(n)gt(pi)/(3sqrt(3))`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise ESTIMATION, GAMMA FUNCTION AND DERIVATIVE OF INDEFINITE INTEGRAL|22 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • DIFFERENTIAL EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 APPLICATIONS OF HOMOGENEOUS DIFFERENTIAL EQUATIONS <br> ANALYTICAL & DESCRIPTIVE QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

Let S_(n)=sum_(k=1)^(n) (n)/(n^(2)+nk+k^(2)) and T_(n)=sum_(k=0)^(n-1)(n)/(n^(2)+nk+k^(2)) for n= 1,2,3..., then

Let U_(n)=sum_(k=1)^(n)(n)/(n^(2)+k^(2)),S_(n)=sum_(k=0)^(n-1)(n)/(n^(2)+k^(2)) then

Let a_(n)=sum_(k=1)^(n)(1)/(k(n+1-k)), then for n>=2

S_(n)=sum_(k=1)^(n)(k^(2)+n^(2))/(n^(3)) and T_(n)=sum_(k=0)^(n-1)(k^(2)+n^(2))/(n^(3)),n in N then

Let S_(n)=sum_(r=1)^(oo)(1)/(n^(r)) and sum_(n=1)^(k)(n-1)S_(n)=5050, then k=

S= lim_(nrarroo) sum_(k=0)^n 1/sqrt(n^2 + k ^2)

sum_(k =1)^(n) k(1 + 1/n)^(k -1) =

If sum_(k=1)^(n)k=210, find the value of sum_(k=1)^(n)k^(2).