Home
Class 12
MATHS
If |a+ib|=1 then the simplified form of ...

If `|a+ib|=1` then the simplified form of `(1+b+ai)/(1+b-ai)` is

A

b+ai

B

a+bi

C

`(1+b)^(2)+a^(2)`

D

ai

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression \((1 + b + ai)/(1 + b - ai)\) given that \(|a + ib| = 1\). ### Step-by-Step Solution: 1. **Understanding the modulus condition**: Since \(|a + ib| = 1\), we know that: \[ \sqrt{a^2 + b^2} = 1 \] Squaring both sides gives: \[ a^2 + b^2 = 1 \] 2. **Set up the expression**: We need to simplify: \[ \frac{1 + b + ai}{1 + b - ai} \] 3. **Multiply by the conjugate**: To simplify the fraction, multiply the numerator and the denominator by the conjugate of the denominator, which is \(1 + b + ai\): \[ \frac{(1 + b + ai)(1 + b + ai)}{(1 + b - ai)(1 + b + ai)} \] 4. **Calculate the denominator**: The denominator becomes: \[ (1 + b)^2 - (ai)^2 = (1 + b)^2 - a^2(-1) = (1 + b)^2 + a^2 \] Expanding \((1 + b)^2\): \[ (1 + b)^2 = 1 + 2b + b^2 \] Therefore, the denominator simplifies to: \[ 1 + 2b + b^2 + a^2 \] Using \(a^2 + b^2 = 1\), we substitute \(a^2\): \[ 1 + 2b + b^2 + (1 - b^2) = 2 + 2b = 2(1 + b) \] 5. **Calculate the numerator**: The numerator becomes: \[ (1 + b + ai)^2 = (1 + b)^2 + 2(1 + b)(ai) + (ai)^2 \] Expanding this gives: \[ (1 + b)^2 + 2ai(1 + b) - a^2 \] Substituting \((1 + b)^2\) and \(ai^2 = -a^2\): \[ (1 + 2b + b^2) + 2ai(1 + b) - a^2 = 1 + 2b + b^2 - a^2 + 2ai(1 + b) \] Using \(a^2 + b^2 = 1\): \[ 1 + 2b + b^2 - (1 - b^2) + 2ai(1 + b) = 2b + 2b^2 + 2ai(1 + b) \] 6. **Combine the results**: Now we have: \[ \frac{2b + 2b^2 + 2ai(1 + b)}{2(1 + b)} \] Simplifying this gives: \[ \frac{2(b + b^2 + ai(1 + b))}{2(1 + b)} = \frac{b + b^2 + ai(1 + b)}{1 + b} \] 7. **Final simplification**: Factoring out \(1 + b\): \[ = \frac{b + ai}{1 + b} \] Thus, the simplified form of \(\frac{1 + b + ai}{1 + b - ai}\) is: \[ \frac{b + ai}{1 + b} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -2)|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -3)|19 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 27|15 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If the vdectors ai+j+k and i+j+cka!=b!=c!=1, then the value of (1)/(1-a)+(1)/(1-b)+(1)/(1-c) is equal to

If A_i= [ [a^i, b^i] , [b^i, a^i]] and if |a|<1, |b|<1 then sum_(i=1)^oo det(A_i) = (A) a^2/(1-a)^2- b^2/(1-b)^2 (B) a^2/(1-a)^2+ b^2/(1-b)^2 (C) a^2/(1+a)^2- b^2/(1+b)^2 (D) (a^2-b^2)/[(1-a^2)(1-b^2)]

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

Simplify (b+1)^3

Find the real value of a for which 3i^(3)-2ai^(2)+(1-a)i+5 is real