Home
Class 12
MATHS
The value of Arg [i ln ((a-ib)/(a+ib))],...

The value of Arg `[i ln ((a-ib)/(a+ib))]`, where a and b are real numbers, is

A

`0 or pi`

B

`pi/2`

C

not defined

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \text{Arg} \left[ i \ln \left( \frac{a - ib}{a + ib} \right) \right] \), where \( a \) and \( b \) are real numbers, we can follow these steps: ### Step 1: Rewrite the complex fraction Let \( z = a + ib \). Then, the conjugate \( \overline{z} = a - ib \). We can express the fraction as: \[ \frac{a - ib}{a + ib} = \frac{\overline{z}}{z} \] ### Step 2: Calculate the modulus and argument The modulus of \( z \) is given by: \[ |z| = \sqrt{a^2 + b^2} \] Thus, the modulus of \( \overline{z} \) is the same: \[ |\overline{z}| = \sqrt{a^2 + b^2} \] The argument \( \theta \) of \( z \) is: \[ \theta = \tan^{-1} \left( \frac{b}{a} \right) \] The argument of \( \overline{z} \) is: \[ -\theta = -\tan^{-1} \left( \frac{b}{a} \right) \] ### Step 3: Find the argument of the fraction Using the properties of arguments: \[ \text{Arg} \left( \frac{\overline{z}}{z} \right) = \text{Arg}(\overline{z}) - \text{Arg}(z) = -\theta - \theta = -2\theta \] ### Step 4: Substitute into the logarithm Now, we can express the logarithm: \[ \ln \left( \frac{a - ib}{a + ib} \right) = \ln \left( |z| \right) + i \text{Arg} \left( \frac{a - ib}{a + ib} \right) \] Substituting the argument we found: \[ \ln \left( \frac{a - ib}{a + ib} \right) = \ln \left( \sqrt{a^2 + b^2} \right) + i(-2\theta) \] ### Step 5: Multiply by \( i \) Now, we multiply by \( i \): \[ i \ln \left( \frac{a - ib}{a + ib} \right) = i \ln \left( \sqrt{a^2 + b^2} \right) + i^2(-2\theta) \] Since \( i^2 = -1 \), this simplifies to: \[ i \ln \left( \sqrt{a^2 + b^2} \right) - 2\theta \] ### Step 6: Find the argument The argument of \( i \ln \left( \sqrt{a^2 + b^2} \right) - 2\theta \) is determined by the real and imaginary parts. Since \( \ln \left( \sqrt{a^2 + b^2} \right) \) is a real number, the argument will depend on the sign of the imaginary part: \[ \text{Arg} \left( i \ln \left( \sqrt{a^2 + b^2} \right) - 2\theta \right) \] If \( -2\theta \) is real and \( \ln \left( \sqrt{a^2 + b^2} \right) \) is positive, the overall argument will be zero. ### Final Result Thus, we conclude: \[ \text{Arg} \left[ i \ln \left( \frac{a - ib}{a + ib} \right) \right] = 0 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -2)|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -3)|19 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 27|15 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

The value of (tan(i*log((a-ib)/(a+ib)))) is

The value of a and b in (4+3i)/(3+i) = a + ib is

If a+ib=sqrt(3+4i), then a and b=?

IF (sqrt(3)+i)^(10)=a+ib, then a and b are respectively

tan (i log ((a + ib) / / a-ib))) =

If the six roots of x^(6)=-64 are written in the form a+ib, where a and b are real,then the product ofthose roots for which a<0 is

The condition for the cube of a+ib to be a real number is:

The condition for the cube of a+ ib to be a real number is

If z=a+ib, |z|=1 and b ne 0, show that z can be represented as z=(c+i)/(c-i) where c is a real number.