Home
Class 12
MATHS
The principal value of the arg(z) and l...

The principal value of the arg(z) and lzl of the complex number`z= 1+ cos((11pi)/9)+ i sin((11pi)/9)` are respectively

A

`(11 pi)/(8), 2 cos (pi/18)`

B

`-(7pi)/(18), -2 cos ((11 pi)/(18))`

C

`(2pi)/(9), 2 cos ((7pi)/(18))`

D

`-pi/9, -2 cos ((pi)/(18))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -2)|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -3)|19 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 27|15 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

The principal value of the arg(z) and lzl of the complex number z=1+cos((11 pi)/(9))+i sin((11 pi)/(9)) are respectively

Write the complex number z = (i-1)/(cos pi/3 + i sin pi/3) in polar form.

Find the modulus,argument and the principal argument of the complex numbers: a z=1+cos((10 pi)/(9))+i sin((10 pi)/(9))(b)z=-2(cos30^(@)+i sin30^(@))

Convert the complex number z=(i-1)/(cos(pi)/(3)+i sin(pi)/(3)) in the polar form.

Find the complex number z if arg (z+1)=(pi)/(6) and arg(z-1)=(2 pi)/(3)

The principal value of arg(z), where z=1+cos((8 pi)/(5))+i sin((8 pi)/(5))( where i=sqrt(-1) ) is given by

Write the modulus and principal arguments of the complex no.z=4(cos((pi)/(4))+i sin((pi)/(4)))

If z be any complex number (z!=0) then arg((z-i)/(z+i))=(pi)/(2) represents the curve

If z ne 0 be a complex number and "arg"(z)=pi//4 , then