Home
Class 12
MATHS
Let alpha, beta in R " be such that " li...

Let `alpha, beta in R " be such that " lim_( x to 0) (x^(2)sin (beta x))/(ax - sin x) = 1."Then,"6(alpha+beta)"equals"`

Text Solution

Verified by Experts

The correct Answer is:
`(7)`

Here, ` underset( x to 0) lim (x^(2) sin (beta x))/(ax - sin x ) = 1`
` rArr underset( x to 0) lim (x^(2)(beta x-((betax)^(3))/(3!) +((betax)^(5))/(5!) - ...))/(ax - (x - x^(3)/(3!) + x^(5)/(5!) - ...))= 1`
`rArr underset(x to 0) lim (x^(3)(beta-(beta^(3) x^(2))/(3!) + (beta^(5)x^(4))/(5!) - ...))/((alpha-1)x+x^(3)/(3!) +x^(5)/(5!)-...)=1`
Limit exists only, when `alpha - 1 = 0`
`rArr" " alpha = 1` ....(i)
`:. underset( x to 0) lim (x^(3) (beta-(beta^(3)x^(2))/(3!)+(beta^(5)x^(4))/(5!)-...))/(x^(3)(1/(3!)-x^(2)/(5!)-...))= 1 `
` rArr" " 6beta=1` ...(ii)
From Eqs. (i) and (ii) , we get
` 6(alpha + beta) = 6alpha + 6 brta`
` = 6 + 1 = 7`
Promotional Banner

Topper's Solved these Questions

  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise 1^(infty) Form, RHL and LHL (Objective Questions I )|13 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise 1^(infty) Form, RHL and LHL (Fill in the Blanks)|2 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise 0/0 and infty/infty Form (Analytical & Descriptive Questions)|4 Videos
  • JEE MAINS

    IIT JEE PREVIOUS YEAR|Exercise All Questions|1 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise SOLVING SYSTEM OF EQUATIONS (INTEGER ANSWER TYPE QUESTION)|2 Videos

Similar Questions

Explore conceptually related problems

Let alpha,beta in R such that lim_(x rarr0)(x^(2)sin(beta x))/(alpha x-sin x)=1* Then 6(alpha+beta) equals

If lim_(x rarr0)(x^(2)sin(beta x))/(alpha x-sin x)=1, when write the value of 18(alpha+2 beta)

The value of lim_(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) - e^(beta x)) equals

The value of lim_(x rarr0)(sin alpha x+sin beta x)/(e^(alpha x)-e^(beta x)) equals

lim_(x rarr00)(sin alpha x)/(sin beta x)=(alpha)/(beta)

lim_(x rarr0)(e^(alpha x)-e^(beta x))/(sin alpha x-sin beta x)=

If lim _( x to 0) (alpha x e ^(x) - beta log _(e) (1 + x ) + gamma x ^(2) e ^(-x))/( x^2 sin x) = 10, alpha , beta, gamma in R, then the value of alpha+ beta + gamma is ____________.