Home
Class 12
MATHS
Let f : R to R be a differentiable func...

Let `f : R to R ` be a differentiable function satisfying `f'(3) + f'(2) = 0 `, Then ` lim_(x to 0) ((1+f(3+x)-f(3))/(1+f(2-x)-f(2)))^(1/x) ` is equal to

A

e

B

`e^(-1)`

C

`e^(2)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we will follow these steps: **Step 1: Rewrite the limit expression.** We need to evaluate: \[ \lim_{x \to 0} \left( \frac{1 + f(3+x) - f(3)}{1 + f(2-x) - f(2)} \right)^{\frac{1}{x}} \] **Step 2: Simplify the expression inside the limit.** As \( x \to 0 \), both the numerator and denominator approach 1, leading to an indeterminate form of \( \frac{0}{0} \). We can rewrite the limit using the exponential function: \[ \lim_{x \to 0} \left( \frac{1 + f(3+x) - f(3)}{1 + f(2-x) - f(2)} \right)^{\frac{1}{x}} = e^{\lim_{x \to 0} \frac{f(3+x) - f(3) - (f(2-x) - f(2))}{x}} \] **Step 3: Apply L'Hôpital's Rule.** Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{f(3+x) - f(3) - (f(2-x) - f(2))}{x} = \lim_{x \to 0} \frac{f'(3+x) + f'(2-x)}{1} \] **Step 4: Evaluate the derivatives.** From the problem, we know that: \[ f'(3) + f'(2) = 0 \] Thus, as \( x \to 0 \): \[ f'(3+x) \to f'(3) \quad \text{and} \quad f'(2-x) \to f'(2) \] So, \[ \lim_{x \to 0} \left( f'(3+x) + f'(2-x) \right) = f'(3) + f'(2) = 0 \] **Step 5: Substitute back into the limit.** Now we can substitute this back into our limit: \[ \lim_{x \to 0} \frac{f(3+x) - f(3) - (f(2-x) - f(2))}{x} = 0 \] **Step 6: Final evaluation.** Thus, we have: \[ e^{\lim_{x \to 0} \frac{f(3+x) - f(3) - (f(2-x) - f(2))}{x}} = e^0 = 1 \] Therefore, the final result is: \[ \boxed{1} \]

To solve the limit problem, we will follow these steps: **Step 1: Rewrite the limit expression.** We need to evaluate: \[ \lim_{x \to 0} \left( \frac{1 + f(3+x) - f(3)}{1 + f(2-x) - f(2)} \right)^{\frac{1}{x}} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise 1^(infty) Form, RHL and LHL (Fill in the Blanks)|2 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise 1^(infty) Form, RHL and LHL (Analytical & Descriptive Question)|1 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise 0/0 and infty/infty Form (Integer Type Questions)|2 Videos
  • JEE MAINS

    IIT JEE PREVIOUS YEAR|Exercise All Questions|1 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise SOLVING SYSTEM OF EQUATIONS (INTEGER ANSWER TYPE QUESTION)|2 Videos

Similar Questions

Explore conceptually related problems

f'(3)+f'(2)=0 Find the lim_(x rarr0)((1+f(3+x)-f(3))/(1+f(2-x)-f(2)))^((1)/(x))

Let f(x) be a twice-differentiable function and f'(0)=2. The evaluate: lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

Let f(x) be twice differentiable function such that f'(0) =2 , then, lim_(xrarr0) (2f(x)-3f(2x)+f(4x))/(x^2) , is

Let f(x) be a differentiable function satisfying f(y)f((x)/(y))=f(x)AA,x,y in R,y!=0 and f(1)!=0,f'(1)=3 then

If f:R rarr R is continous function satisying f(0) =1 and f(2x) -f(x) =x, AAx in R , then lim_(nrarroo) (f(x)-f((x)/(2^(n)))) is equal to

Let f : (-1,1) to R be a differentiable function with f(0) =-1 and f'(0)=1 Let g(x)= [f(f(2x)+1)]^2 . Then g'(0)=

Let f:R rarr R be a differentiable function satisfying 2f((x+y)/(2))-f(y)=f(x) AA x , y in R ,if f(0)=5 and f'(0)=-1 , then f(1)+f(2)+f(3) equals