Home
Class 12
MATHS
If e^(y) +xy = e, the ordered pair ((dy...

If `e^(y) +xy = e`, the ordered pair ` ((dy)/(dx),(d^(2)y)/(dx^(2)))` at x = 0 is equal to

A

`(1/e,1/e^(2))`

B

`(-1/e,1/e^(2))`

C

`(1/e,1/e^(2))`

D

`(-1/e, -1/e^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ordered pair \(\left(\frac{dy}{dx}, \frac{d^2y}{dx^2}\right)\) at \(x = 0\) for the equation \(e^y + xy = e\). ### Step 1: Differentiate the equation with respect to \(x\) Starting from the equation: \[ e^y + xy = e \] Differentiating both sides with respect to \(x\): \[ \frac{d}{dx}(e^y) + \frac{d}{dx}(xy) = \frac{d}{dx}(e) \] Using the chain rule and product rule, we get: \[ e^y \frac{dy}{dx} + \left(x \frac{dy}{dx} + y\right) = 0 \] This simplifies to: \[ e^y \frac{dy}{dx} + x \frac{dy}{dx} + y = 0 \] ### Step 2: Solve for \(\frac{dy}{dx}\) Rearranging the equation gives: \[ \left(e^y + x\right) \frac{dy}{dx} + y = 0 \] Thus, \[ \frac{dy}{dx} = -\frac{y}{e^y + x} \] ### Step 3: Evaluate \(\frac{dy}{dx}\) at \(x = 0\) Substituting \(x = 0\) into the equation: \[ \frac{dy}{dx} = -\frac{y}{e^y} \] ### Step 4: Differentiate again to find \(\frac{d^2y}{dx^2}\) Now we differentiate \(\frac{dy}{dx} = -\frac{y}{e^y + x}\) again with respect to \(x\): Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{(e^y + x)(-\frac{dy}{dx}) - (-y)(1)}{(e^y + x)^2} \] This simplifies to: \[ \frac{d^2y}{dx^2} = \frac{(e^y + x)\left(-\frac{dy}{dx}\right) + y}{(e^y + x)^2} \] ### Step 5: Substitute \(\frac{dy}{dx}\) into \(\frac{d^2y}{dx^2}\) Substituting \(\frac{dy}{dx} = -\frac{y}{e^y + x}\): \[ \frac{d^2y}{dx^2} = \frac{(e^y + x)\left(\frac{y}{e^y + x}\right) + y}{(e^y + x)^2} \] This simplifies to: \[ \frac{d^2y}{dx^2} = \frac{y + y}{(e^y + x)^2} = \frac{2y}{(e^y + x)^2} \] ### Step 6: Evaluate \(\frac{d^2y}{dx^2}\) at \(x = 0\) Substituting \(x = 0\): \[ \frac{d^2y}{dx^2} = \frac{2y}{(e^y)^2} = \frac{2y}{e^{2y}} \] ### Step 7: Final ordered pair Thus, the ordered pair \(\left(\frac{dy}{dx}, \frac{d^2y}{dx^2}\right)\) at \(x = 0\) is: \[ \left(-\frac{y}{e^y}, \frac{2y}{e^{2y}}\right) \]

To solve the problem, we need to find the ordered pair \(\left(\frac{dy}{dx}, \frac{d^2y}{dx^2}\right)\) at \(x = 0\) for the equation \(e^y + xy = e\). ### Step 1: Differentiate the equation with respect to \(x\) Starting from the equation: \[ e^y + xy = e \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise Differentiation (Fill in the Blanks)|7 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise Differentiation (Analytical & Descriptive Questions)|9 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise Differentiability at a point (Integer Answer Type Questions)|3 Videos
  • JEE MAINS

    IIT JEE PREVIOUS YEAR|Exercise All Questions|1 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise SOLVING SYSTEM OF EQUATIONS (INTEGER ANSWER TYPE QUESTION)|2 Videos

Similar Questions

Explore conceptually related problems

e^(y)+xy=e then orderd pair ((dy)/(dx),(d^(2)y)/(dx^(2))) at y=1, is

If e^(y)+xy=e," then: "[(d^(2)y)/(dx^(2))]_(x=0) is equal to

If (dy)/(dx)+y=2e^(2x) , then y is equal to

((dy)/(dx))^(2)-(x+y)(dy)/(dx)+xy=0

If y=e^(2x) , then (d^(2)y)/(dx^(2)).(d^(2)x)/(dy^(2)) is equal to

Solve : (dy)/(dx)=e^(x+y)+x^(2)e^(y)

Solve (dy)/(dx)=e^(x-y)+x^(2)e^(-y) .

IIT JEE PREVIOUS YEAR-LIMIT,CONTINUITY AND DIFFERENTIABILITY -Differentiation (Objective Questions I)
  1. If .^(20)C(1)+(2^(2)) .^(20)C(2) + (3^(2)).^(20)C(3) +......+(20^(2))....

    Text Solution

    |

  2. The derivative of tan^(-1)((sin x - cos x)/(sin x + cos x)), with res...

    Text Solution

    |

  3. If e^(y) +xy = e, the ordered pair ((dy)/(dx),(d^(2)y)/(dx^(2))) at x...

    Text Solution

    |

  4. If f(1) = 1, f'(1)=3, then the derivative of f(f(f(x))) +(f(x))^2 at ...

    Text Solution

    |

  5. If 2y=(cot^(-1)((sqrt3 cos x + sin x)/(cos x - sqrt3 sin x)))^(2) , x ...

    Text Solution

    |

  6. for x > 1 if (2x)^(2y)=4e^(2x-2y) then (1+loge 2x)^2 (dy)/(dx)

    Text Solution

    |

  7. If x log(e) (log (e) x) - x^(2) + y^(2) = 4 (y gt 0), then (dy)/(dx)...

    Text Solution

    |

  8. Let f : R to R be a function such that f(x) = x^(3) + x^(2) f'(1) +...

    Text Solution

    |

  9. If x = 3 tant and y = 3 sec t, then the value of (d^2y)/(dx^2)" at" t=...

    Text Solution

    |

  10. If for x (0,1/4), the derivative of tan^(-1)((6xsqrt(x))/(1-9x^3)) is ...

    Text Solution

    |

  11. If g is the inverse of a function f and f'(x) = 1/(1+x^(5)), then g'(x...

    Text Solution

    |

  12. If y= sec (tan^(-1)x)," then "(dy)/(dx)" at " x = 1 is equal to

    Text Solution

    |

  13. Let g(x) = ln f(x) where f(x) is a twice differentiable positive func...

    Text Solution

    |

  14. (d^2x)/(dy^2) equals:

    Text Solution

    |

  15. If f''(x) =- f(x) and g(x) = f'(x) and F(x)=(f((x)/(2)))^(2)+(g((x)/(2...

    Text Solution

    |

  16. If f(x) is a twice differentiable function and given that f(1) = 1, f...

    Text Solution

    |

  17. If y is a function of xa n dlog(x+y)-2x y=0, then the value of y^(prim...

    Text Solution

    |

  18. If x^2+y^2=1then

    Text Solution

    |

  19. Let f(x)=|x^3sinxcosx6-1 0p p^2p^3|,w h e r ep is a constant. Then (d...

    Text Solution

    |

  20. If y^2 = p ( x ), a polynomial of degree 3, then 2 d/(dx) (y^3 (d^2y)/...

    Text Solution

    |