Home
Class 12
MATHS
If y= sec (tan^(-1)x)," then "(dy)/(dx)"...

If `y= sec (tan^(-1)x)," then "(dy)/(dx)" at " x = 1` is equal to

A

`1/sqrt2`

B

`1/2`

C

1

D

`sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \(\frac{dy}{dx}\) of the function \(y = \sec(\tan^{-1}(x))\) at \(x = 1\), we will follow these steps: ### Step 1: Differentiate the function We start with the function: \[ y = \sec(\tan^{-1}(x)) \] To differentiate this, we will use the chain rule. The derivative of \(\sec(u)\) is \(\sec(u) \tan(u) \frac{du}{dx}\), where \(u = \tan^{-1}(x)\). ### Step 2: Find \(\frac{du}{dx}\) First, we find \(\frac{du}{dx}\): \[ u = \tan^{-1}(x) \implies \frac{du}{dx} = \frac{1}{1 + x^2} \] ### Step 3: Apply the chain rule Now, applying the chain rule: \[ \frac{dy}{dx} = \sec(\tan^{-1}(x)) \tan(\tan^{-1}(x)) \cdot \frac{du}{dx} \] Since \(\tan(\tan^{-1}(x)) = x\), we can substitute this into our equation: \[ \frac{dy}{dx} = \sec(\tan^{-1}(x)) \cdot x \cdot \frac{1}{1 + x^2} \] ### Step 4: Simplify \(\sec(\tan^{-1}(x))\) Next, we need to find \(\sec(\tan^{-1}(x))\). From the definition of \(\tan^{-1}(x)\), we can visualize a right triangle where: - The opposite side is \(x\) - The adjacent side is \(1\) - The hypotenuse is \(\sqrt{x^2 + 1}\) Thus, we have: \[ \sec(\tan^{-1}(x)) = \frac{\text{Hypotenuse}}{\text{Adjacent}} = \frac{\sqrt{x^2 + 1}}{1} = \sqrt{x^2 + 1} \] ### Step 5: Substitute back into the derivative Now substituting back into our derivative: \[ \frac{dy}{dx} = \sqrt{x^2 + 1} \cdot x \cdot \frac{1}{1 + x^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{x \sqrt{x^2 + 1}}{1 + x^2} \] ### Step 6: Evaluate at \(x = 1\) Now we evaluate \(\frac{dy}{dx}\) at \(x = 1\): \[ \frac{dy}{dx} \bigg|_{x=1} = \frac{1 \cdot \sqrt{1^2 + 1}}{1 + 1^2} = \frac{1 \cdot \sqrt{2}}{2} = \frac{\sqrt{2}}{2} \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at \(x = 1\) is: \[ \frac{dy}{dx} \bigg|_{x=1} = \frac{\sqrt{2}}{2} \] ---

To find the derivative \(\frac{dy}{dx}\) of the function \(y = \sec(\tan^{-1}(x))\) at \(x = 1\), we will follow these steps: ### Step 1: Differentiate the function We start with the function: \[ y = \sec(\tan^{-1}(x)) \] To differentiate this, we will use the chain rule. The derivative of \(\sec(u)\) is \(\sec(u) \tan(u) \frac{du}{dx}\), where \(u = \tan^{-1}(x)\). ...
Promotional Banner

Topper's Solved these Questions

  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise Differentiation (Fill in the Blanks)|7 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise Differentiation (Analytical & Descriptive Questions)|9 Videos
  • LIMIT,CONTINUITY AND DIFFERENTIABILITY

    IIT JEE PREVIOUS YEAR|Exercise Differentiability at a point (Integer Answer Type Questions)|3 Videos
  • JEE MAINS

    IIT JEE PREVIOUS YEAR|Exercise All Questions|1 Videos
  • MATRICES AND DETERMINANTS

    IIT JEE PREVIOUS YEAR|Exercise SOLVING SYSTEM OF EQUATIONS (INTEGER ANSWER TYPE QUESTION)|2 Videos

Similar Questions

Explore conceptually related problems

If y=sec(tan^(-1)x) , then (tan^(-1)x) , then (dy)/(dx)" at "x=1 is equal to

if y=sec(tan^(-1)x)then(dy)/(dx) is

If y=tan^(-1)x ,then (dy)/(dx) is

If y=x^(tan ^(-1)x) ,then (dy)/(dx)=

If y= sec ( tan sqrt x ) ,then (dy)/(dx) =

if y=tan(sin^(-1)x) then (dy)/(dx)

If y=log(sec x+tan x), then (dy)/(dx)=

IIT JEE PREVIOUS YEAR-LIMIT,CONTINUITY AND DIFFERENTIABILITY -Differentiation (Objective Questions I)
  1. If .^(20)C(1)+(2^(2)) .^(20)C(2) + (3^(2)).^(20)C(3) +......+(20^(2))....

    Text Solution

    |

  2. The derivative of tan^(-1)((sin x - cos x)/(sin x + cos x)), with res...

    Text Solution

    |

  3. If e^(y) +xy = e, the ordered pair ((dy)/(dx),(d^(2)y)/(dx^(2))) at x...

    Text Solution

    |

  4. If f(1) = 1, f'(1)=3, then the derivative of f(f(f(x))) +(f(x))^2 at ...

    Text Solution

    |

  5. If 2y=(cot^(-1)((sqrt3 cos x + sin x)/(cos x - sqrt3 sin x)))^(2) , x ...

    Text Solution

    |

  6. for x > 1 if (2x)^(2y)=4e^(2x-2y) then (1+loge 2x)^2 (dy)/(dx)

    Text Solution

    |

  7. If x log(e) (log (e) x) - x^(2) + y^(2) = 4 (y gt 0), then (dy)/(dx)...

    Text Solution

    |

  8. Let f : R to R be a function such that f(x) = x^(3) + x^(2) f'(1) +...

    Text Solution

    |

  9. If x = 3 tant and y = 3 sec t, then the value of (d^2y)/(dx^2)" at" t=...

    Text Solution

    |

  10. If for x (0,1/4), the derivative of tan^(-1)((6xsqrt(x))/(1-9x^3)) is ...

    Text Solution

    |

  11. If g is the inverse of a function f and f'(x) = 1/(1+x^(5)), then g'(x...

    Text Solution

    |

  12. If y= sec (tan^(-1)x)," then "(dy)/(dx)" at " x = 1 is equal to

    Text Solution

    |

  13. Let g(x) = ln f(x) where f(x) is a twice differentiable positive func...

    Text Solution

    |

  14. (d^2x)/(dy^2) equals:

    Text Solution

    |

  15. If f''(x) =- f(x) and g(x) = f'(x) and F(x)=(f((x)/(2)))^(2)+(g((x)/(2...

    Text Solution

    |

  16. If f(x) is a twice differentiable function and given that f(1) = 1, f...

    Text Solution

    |

  17. If y is a function of xa n dlog(x+y)-2x y=0, then the value of y^(prim...

    Text Solution

    |

  18. If x^2+y^2=1then

    Text Solution

    |

  19. Let f(x)=|x^3sinxcosx6-1 0p p^2p^3|,w h e r ep is a constant. Then (d...

    Text Solution

    |

  20. If y^2 = p ( x ), a polynomial of degree 3, then 2 d/(dx) (y^3 (d^2y)/...

    Text Solution

    |