Home
Class 12
MATHS
If f(a)=2, f'(a)=1, g(a)=3, g'(a)=-1, th...

If `f(a)=2, f'(a)=1, g(a)=3, g'(a)=-1`, then `underset(x to a)lim (f(a)g(x)-f(x)g(a))/(x-a)` is equal to

A

6

B

1

C

`-1`

D

`-5`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 4)|15 Videos
  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 2)|15 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If f(a) =2, f'(a)=1, g(a) =-1 , g' (a)=2 , then the value of lim_(xrarr a) (g(x)f(a)-g(a)f(x))/(x-a) , is

f(a)=2,f'(a)=1,g(a)=-1,g'(a)=-2 then lim_(x rarr oo)(g(x)f(a)-g(a)f(x))/(x-a), is

If (a)=2,f'(a)=1,g(a)=-1,g'(a)=2f(a)=2,f'(a)=1,g(a)=-1,g'(a)=2 then the value of lim_(x rarr a)(g(x)f(a)-g(a)f(x))/(x-a) is (a) -5 (b) (1)/(5)(c)5(d) none of these

If f(a)=2,g(a)=-1,f'(a)=1, g'(a)=2 then the value of lim_(x->0) (f(x).g(a)-f(a).g(x))/(x-a)= (a) 5 (b) -5 (c) -6 (d) non of these

If f(1) =g(1)=2 , then lim_(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-g(x)) is equal to