Home
Class 12
MATHS
If f : R to R, g : R to R and h: R to R ...

If `f : R to R, g : R to R and h: R to R` is such that `f (x) =x ^(2) , g (x) = tan x and h (x) = log x, ` then the value of `[ho(gof),if x = (sqrtpi)/(2)` will be

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( h \circ g \circ f \) at \( x = \frac{\sqrt{\pi}}{2} \). Let's break it down step by step. ### Step 1: Define the functions We have the following functions: - \( f(x) = x^2 \) - \( g(x) = \tan(x) \) - \( h(x) = \log(x) \) ### Step 2: Compute \( f\left(\frac{\sqrt{\pi}}{2}\right) \) We first need to find \( f\left(\frac{\sqrt{\pi}}{2}\right) \): \[ f\left(\frac{\sqrt{\pi}}{2}\right) = \left(\frac{\sqrt{\pi}}{2}\right)^2 = \frac{\pi}{4} \] ### Step 3: Compute \( g(f(x)) \) Next, we need to compute \( g(f(x)) \): \[ g\left(f\left(\frac{\sqrt{\pi}}{2}\right)\right) = g\left(\frac{\pi}{4}\right) = \tan\left(\frac{\pi}{4}\right) \] Since \( \tan\left(\frac{\pi}{4}\right) = 1 \), we have: \[ g\left(f\left(\frac{\sqrt{\pi}}{2}\right)\right) = 1 \] ### Step 4: Compute \( h(g(f(x))) \) Now we compute \( h(g(f(x))) \): \[ h\left(g\left(f\left(\frac{\sqrt{\pi}}{2}\right)\right)\right) = h(1) = \log(1) \] Since \( \log(1) = 0 \), we have: \[ h\left(g\left(f\left(\frac{\sqrt{\pi}}{2}\right)\right)\right) = 0 \] ### Final Answer Thus, the value of \( h \circ g \circ f \) at \( x = \frac{\sqrt{\pi}}{2} \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 17|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 18|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 15|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If f : R rarr R, f(x) = x^(2) - 5x + 4 and g : R^(+) rarr R, g(x) = log x , then the value of (gof) (2) is

Let f : R to R and g : R to R be given by f (x) = x^(2) and g(x) =x ^(3) +1, then (fog) (x)

If f : R rarr R and g : R rarr R be two mapping such that f(x) = sin x and g(x) = x^(2) , then find the values of (fog) (sqrt(pi))/(2) "and (gof)"((pi)/(3)) .

If f:R to R, f(x) =x^(2)+2x -3 and g:R to R, g(x) =3x-4 then the value of fog(x) is :

If f : R rarr R, f(x) = x^(2) + 2x - 3 and g : R rarr R, g(x) = 3x - 4 then the value of fog (x) is

If f: R to R, g , R to R be two funcitons, and h(x) = 2 "min" {f(x) - g(x),0} then h(x)=

Find fog and g o f when f : R → R and g : R → R is defined by f ( x ) = 5 x + x^2 and g ( x ) = 2x