Home
Class 12
MATHS
Let R be the set of real number and the ...

Let R be the set of real number and the mapping `f :R to R and g : R to R` be defined by `f (x)=5-x^(2)and g (x)=3x-4,` then the value of (fog) `(-1)` is

Text Solution

Verified by Experts

The correct Answer is:
44
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 17|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 18|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 15|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

Let R be the set of real numbers and the functions f:R rarr R and g:R rarr R be defined by f(x)=x^(2)+2x-3 and g(x)=x+1 Then the value of x for which f(g(x))=g(f(x)) is

If f:R to R and g:R to R are defined by f(x)=(2x+3) and g(x)=x^(2)+7 , then the values of x such that g(f(x))=8 are

Let f : R to R and g : R to R be given by f (x) = x^(2) and g(x) =x ^(3) +1, then (fog) (x)

If f: R to R and g: R to R are defined by f(x)=2x+3 and g(x)=x^(2)+7 , then the values of x such that g(f(x))=8 are

Let f:R rarr R defined by f(x)=x^(3)+e^(x/2) and let g(x)=f^(-1)(x) then the value of g'(1) is

Let f:R rarr R and g:R rarr R be defined by f(x)=x^(2) and g(x)=x+1. Show that fog != gof

If f:R to R, f(x) =x^(2)+2x -3 and g:R to R, g(x) =3x-4 then the value of fog(x) is :

Let f:R to R and g:R to R be given by f(x)=3x^(2)+2 and g(x)=3x-1 for all x to R . Then,