Home
Class 12
MATHS
If sin ^(-1) x + sin ^(-1) y + sin ^(-1)...

If `sin ^(-1) x + sin ^(-1) y + sin ^(-1) z = (3pi)/(2)` then the value of `x ^(100) + y ^(100) + z ^(100) - (3)/( x ^(101) + y^(101) + z ^(101)) ` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2} \] ### Step 1: Analyze the equation The maximum value of \(\sin^{-1} t\) for any real number \(t\) is \(\frac{\pi}{2}\), which occurs when \(t = 1\). Since the sum of three arcsine functions equals \(\frac{3\pi}{2}\), each term must equal \(\frac{\pi}{2}\) for the equation to hold true. Therefore, we conclude: \[ \sin^{-1} x = \frac{\pi}{2}, \quad \sin^{-1} y = \frac{\pi}{2}, \quad \sin^{-1} z = \frac{\pi}{2} \] ### Step 2: Solve for \(x\), \(y\), and \(z\) From \(\sin^{-1} x = \frac{\pi}{2}\), we can deduce: \[ x = \sin\left(\frac{\pi}{2}\right) = 1 \] Similarly, we find: \[ y = 1, \quad z = 1 \] ### Step 3: Substitute values into the expression Now we need to evaluate the expression: \[ x^{100} + y^{100} + z^{100} - \frac{3}{x^{101} + y^{101} + z^{101}} \] Substituting \(x = 1\), \(y = 1\), and \(z = 1\): \[ 1^{100} + 1^{100} + 1^{100} - \frac{3}{1^{101} + 1^{101} + 1^{101}} \] ### Step 4: Simplify the expression Calculating each term: \[ 1^{100} = 1, \quad 1^{101} = 1 \] Thus, we have: \[ 1 + 1 + 1 - \frac{3}{1 + 1 + 1} = 3 - \frac{3}{3} \] This simplifies to: \[ 3 - 1 = 2 \] ### Final Answer The value of the expression is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 18|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 19|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 16|15 Videos
  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-2 (CONCEPT APPLICATOR)|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = (pi) / (2)

If sin^(-1) x + sin^(-1) y + sin^(-1) z = 3pi//2 , evaluate: x^(100) + y^(100) + z^(100) + (9)/(x^(101) + y^(101) + z^(101)) .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 , then write the value of x+y+z .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2) ,then the value of x^(100)+y^(100)+z^(100)+(12)/(x^(101)+y^(101)+z^(101)) is equal to

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2), find the value of x^(2)+y^(2)+z^(2)

Q.if sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2), then

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 then the value of x^(100)-y^(100)-z^(100)-12/(x^(101)-y^(101)-z^(101))=

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) the value of x^(100)+y^(100)+z^(100)-(9)/(x^(101)+y^(101)+z^(101)) is