Home
Class 12
MATHS
Find the minors and cofactors of the el...

Find the minors and cofactors of the elements of the determinant `Delta = |{:(a_(11), a_(12), a_(13)), (a_(21), a_(22), a_(23)), (a_(31), a_(32), a_(33)):}|`

Text Solution

Verified by Experts

Let `M_(ij)` denote the minor of `a_(ij) " in "Delta`.
Now, `a_(11)` accurs in the 1st row and 1st column. So, in order to find the minor of `a_(11)`, we delete the 1st row and 1st column of `Delta`. The minor `M_(11) " of"a_(11)" is given by" M_(11) = |{:(a_(21), a_(23)), (a_(32), a_(33)):}| = (a_(22)a_(33) - a_(32)a_(23)).`
Similarly, we have
`M_(12) = |{:(a_(21), a_(23)), (a_(31), a_(33)):}| = (a_(21)a_(33) - a_(31)a_(23)),`
`M_(13) = |{:(a_(21), a_(22)), (a_(31), a_(32)):}| = (a_(21)a_(32) - a_(31)a_(22)),`
`M_(21) = |{:(a_(12), a_(13)), (a_(32), a_(32)):}| = (a_(12)a_(33) - a_(32)a_(13)).`
Similarly, we may obtain the minor of each of the remaining elements.
Now, if we denote the cofactor of `a_(ij) "by C_(ij)` then
`C_(11) = (-1)^(1+1)*M_(11) = M_(11) = (a_(22)a_(33) - a_(32)a_(23)),`
`C_(12) = (-1)^(1+2)*M_(12) = -M_(12) = (a_(31)a_(23) - a_(21)a_(33)),`
`C_(13) = (-1)^(1+3)*M_(13) = M_(13) = (a_(21)a_(32) - a_(31)a_(22)),`
`C_(21) = (-1)^(2+1)*M_(21) =-M_(21) = (a_(32)a_(13) - a_(12)a_(33)).`
Similarly, the cofactor of each of the remaining elements of `Delta` can be determined.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    RS AGGARWAL|Exercise Exercise 6A|22 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Exercise 6B|44 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos
  • DIFFERENTIAL EQUATIONS AND THEIR FORMATION

    RS AGGARWAL|Exercise Exercise 18C|16 Videos

Similar Questions

Explore conceptually related problems

Find minors and cofactors of the elements a_(11),a_(21) in the determinant Delta=det[[a_(21),a_(22),a_(23)a_(31),a_(32),a_(23)]]

Find minors and cofactors of the elements of the determinant det[[2,-3,56,0,41,5,-7]]a_(11)A_(31)+a_(12)A_(32)+a_(13)A_(33)=0

Let A=[a_("ij")]_(3xx3) be a matrix such that A A^(T)=4I and a_("ij")+2c_("ij")=0 , where C_("ij") is the cofactor of a_("ij") and I is the unit matrix of order 3. |(a_(11)+4,a_(12),a_(13)),(a_(21),a_(22)+4,a_(23)),(a_(31),a_(32),a_(33)+4)|+5 lambda|(a_(11)+1,a_(12),a_(13)),(a_(21),a_(22)+1,a_(23)),(a_(31),a_(32),a_(33)+1)|=0 then the value of lambda is

Let A=[a_(ij)]_(3xx3) be a matrix such that A.A^(T)=4I and a_(ij)+2c_(ij)=0 where c_(ij) is the cofactor of a_(ij) AAi & j , I is the unit matrix of order 3 and A^(T) is the transpose of the matrix A If |(a_(11)+4,a_(12), a_(3)),(a_(21),a_(22)+4,a_(24)),(a_(31),a_(32),a_(33)+4)|+5lamda|(a_(11)+1,a_(12),a_(13)),(a_(21),a_(22)+1,a_(23)),(a_(31),a_(32),a_(33)+1)|=0 then lamda=a/b where a and b are coprime positive integers then the value of a+b is______

Find minors and co-factors of the elements of the determinant : |{:(2,-3,5),(6,0,4),(1,5,-7):}| and verify that a_(11)A_(31)+a_(12)A_(32)+a_(13)A_(33)=0

(a_(1))/(a_(1)+a_(2))+(a_(3))/(a_(3)+a_(4))=(2a_(2))/(a_(2)+a_(3))

If Delta=|{:(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33)):}| and C_(ij)=(-1)^(i+j) M_(ij), "where " M_(ij) is a determinant obtained by deleting ith row and jth column then then |{:(C_(11),C_(12),C_(13)),(C_(21),C_(22),C_(23)),(C_(31),C_(32),C_(33)):}|=Delta^(2). Suppose a,b,c, in R, a+b+c gt 0, A =bc -a^(2),B =ca-b^(2) and c=ab-c^(2) and |{:(A,B,C),(B,C,A),(C,A,B):}| =49 then the valu of a^(3)+b^(3)+c^(3) -3abc is

Let A=[a_(ij)]_(3xx3) be a matrix such that A A^T=4T and a_(ij)+2c_(ij)=0 , where c_(ij) is the cofactor of a_(ij) and I is the unit matrix of order 3 . |(a_11 +4 , a_12 , a_13),(a_21 , a_(22)+4 ,a_23),(a_31,a_32,a_(33)+4)|+5lambda|(a_(11)+1 , a_12,a_13),(a_21,a_(22)+1, a_23),(a_31, a_32 , a_(33)+1)|=0 then the value of 10lambda is ____

RS AGGARWAL-DETERMINANTS-Objective Questions
  1. Find the minors and cofactors of the elements of the determinant Del...

    Text Solution

    |

  2. |["cos"70^(@), "sin"20^(@)], ["sin"70^(@), "cos"20^(@)]|=?

    Text Solution

    |

  3. |["cos"15^(@), "sin"15^(@)], ["sin"15^(@), "cos"15^(@)]|=?

    Text Solution

    |

  4. |["sin"23^(@), -"sin"7^(@)], ["cos"23^(@), "cos"7^(@)]|=?

    Text Solution

    |

  5. Evaluate: |(a+i b, c+i d),(-c+i d, a-i b)|

    Text Solution

    |

  6. Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega,omega)| ...

    Text Solution

    |

  7. If omega is a complex cube root of unity then the value of the determi...

    Text Solution

    |

  8. If A=[[1^2,2^2,3^2],[2^2,3^2,4^2],[3^2,4^2,5^2]] then |AdjA|=

    Text Solution

    |

  9. |(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)|=?

    Text Solution

    |

  10. |[a-b, b-c, c-a], [b-c, c-a, a-b], [c-a, a-b, b-c]|=?

    Text Solution

    |

  11. find |(1, 1+p,1+p+q),(2, 3+2p,1+3p+2q),(3, 6+3p, 1+6 p+3q)|=.

    Text Solution

    |

  12. |{:(1, 1, 1),(a, b, c),(a^(3), b^(3), c^(3)):}|= is equal to

    Text Solution

    |

  13. Without expanding evaluate the determinant |(sinalpha,cosalpha,sin(alp...

    Text Solution

    |

  14. If a, b, c be distinct positive real numbers then the value of |[a, b,...

    Text Solution

    |

  15. Q. |(x+y,x,x),(15x+4y,4x,2x),(10x +8y,8x,3x)|=x^3

    Text Solution

    |

  16. Evaluate the following: |[a^2+2a, 2a+1, 1],[2a+1, a+2, 1],[3,3,1]|

    Text Solution

    |

  17. |[a, a+2b, a+2b+3c], [3a, 4a+6b, 5a+7b+9c], [6a, 9a+12b, 11a+15b+18c]|...

    Text Solution

    |

  18. Prove that|[b+c,a,b],[c+a,c,a],[a+b,b,c]|=(a+b+c)(a-c)^2

    Text Solution

    |

  19. |[1, 1, 1], [1, 1+x, 1], [1, 1, 1+y]|=?

    Text Solution

    |

  20. |[bc, b+c, 1], [ca, c+a, 1], [ab, a+b, 1]|=?

    Text Solution

    |

  21. |[b+c, a, a], [b, c+a, b], [c, c, a+b]|=?

    Text Solution

    |