Home
Class 12
MATHS
Prove that |{:(a^(2), a^(2)-(b-c)^(2), ...

Prove that `|{:(a^(2), a^(2)-(b-c)^(2), bc), (b^(2), b^(2)-(c-a)^(2), ca), (c^(2), c^(2)-(a-b)^(2), ab):}|= (a^(2)+b^(2)+c^(2))(a-b)(b-c)(c-a)(a+b+c)`

Text Solution

AI Generated Solution

To prove that \[ \left| \begin{array}{ccc} a^2 & a^2 - (b - c)^2 & bc \\ b^2 & b^2 - (c - a)^2 & ca \\ c^2 & c^2 - (a - b)^2 & ab \end{array} \right| = (a^2 + b^2 + c^2)(a - b)(b - c)(c - a)(a + b + c) ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    RS AGGARWAL|Exercise Exercise 6A|22 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Exercise 6B|44 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos
  • DIFFERENTIAL EQUATIONS AND THEIR FORMATION

    RS AGGARWAL|Exercise Exercise 18C|16 Videos

Similar Questions

Explore conceptually related problems

The value of determinant |{:(a^(2),a^(2)-(b-c)^(2),bc),(b^(2),b^(2)-(c-a)^(2),ca),(c^(2),c^(2)-(a-b)^(2),ab):}| is

Prove that : |{:(a^(2),b^(2)+c^(2),bc),(b^(2),c^(2)+a^(2),ca),(c^(2),a^(2)+b^(2),ab):}|=-(a-b)(b-c)(c-a)(a+b+c)(a^(2)+b^(2)+c^(2))

Prove that |[a^2, a^2-(b-c)^2, bc],[b^2, b^2-(c-a)^2, ca],[c^2, c^2-(a-b)^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

The determinant |(a^2,a^2-(b-c)^2,bc),(b^2,b^2-(c-a)^2,ca),(c^2,c^2-(a-b)^2,ab)| is divisible by

Prove that |{:(1, a, a^(2)-bc),(1, b, b^(2)-ca), (1, c, c^(2)-ab):}|=0

Prove that : |{:(b^(2)c^(2),bc, b+c),(c^(2)a^(2),ca, c+a),(a^(2)b^(2),ab, a+b):}|=0

Show that |{:(bc-a^(2),,ca-b^(2),,ab-c^(2)),(ca-b^(2),,ab-c^(2),,bc-a^(2)),(ab-c^(2),,bc-a^(2),,ca-b^(2)):}| |{:(a^(2),,c^(2),,2ca-b^(2)),(2ab-c^(2),,b^(2),,a^(2)),(b^(2),,2ac-a^(2),,c^(2)):}|.

Prove the identities: |[a^2,a^2-(b-c)^2,b c], [b^2,b^2-(c-a)^2,c a],[ c^2,c^2-(a-b)^2,a b]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Show that |[a^2,a^2-(b-c)^2,bc],[b^2,b^2-(c-a)^2,ca],[c^2,c^2-(a-b)^2,ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

|[bc,ca,ab],[(b+c)^(2),(c+a)^(2),(a+b)^(2)],[a^(2),b^(2)c^(2)]|

RS AGGARWAL-DETERMINANTS-Objective Questions
  1. Prove that |{:(a^(2), a^(2)-(b-c)^(2), bc), (b^(2), b^(2)-(c-a)^(2), ...

    Text Solution

    |

  2. |["cos"70^(@), "sin"20^(@)], ["sin"70^(@), "cos"20^(@)]|=?

    Text Solution

    |

  3. |["cos"15^(@), "sin"15^(@)], ["sin"15^(@), "cos"15^(@)]|=?

    Text Solution

    |

  4. |["sin"23^(@), -"sin"7^(@)], ["cos"23^(@), "cos"7^(@)]|=?

    Text Solution

    |

  5. Evaluate: |(a+i b, c+i d),(-c+i d, a-i b)|

    Text Solution

    |

  6. Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega,omega)| ...

    Text Solution

    |

  7. If omega is a complex cube root of unity then the value of the determi...

    Text Solution

    |

  8. If A=[[1^2,2^2,3^2],[2^2,3^2,4^2],[3^2,4^2,5^2]] then |AdjA|=

    Text Solution

    |

  9. |(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)|=?

    Text Solution

    |

  10. |[a-b, b-c, c-a], [b-c, c-a, a-b], [c-a, a-b, b-c]|=?

    Text Solution

    |

  11. find |(1, 1+p,1+p+q),(2, 3+2p,1+3p+2q),(3, 6+3p, 1+6 p+3q)|=.

    Text Solution

    |

  12. |{:(1, 1, 1),(a, b, c),(a^(3), b^(3), c^(3)):}|= is equal to

    Text Solution

    |

  13. Without expanding evaluate the determinant |(sinalpha,cosalpha,sin(alp...

    Text Solution

    |

  14. If a, b, c be distinct positive real numbers then the value of |[a, b,...

    Text Solution

    |

  15. Q. |(x+y,x,x),(15x+4y,4x,2x),(10x +8y,8x,3x)|=x^3

    Text Solution

    |

  16. Evaluate the following: |[a^2+2a, 2a+1, 1],[2a+1, a+2, 1],[3,3,1]|

    Text Solution

    |

  17. |[a, a+2b, a+2b+3c], [3a, 4a+6b, 5a+7b+9c], [6a, 9a+12b, 11a+15b+18c]|...

    Text Solution

    |

  18. Prove that|[b+c,a,b],[c+a,c,a],[a+b,b,c]|=(a+b+c)(a-c)^2

    Text Solution

    |

  19. |[1, 1, 1], [1, 1+x, 1], [1, 1, 1+y]|=?

    Text Solution

    |

  20. |[bc, b+c, 1], [ca, c+a, 1], [ab, a+b, 1]|=?

    Text Solution

    |

  21. |[b+c, a, a], [b, c+a, b], [c, c, a+b]|=?

    Text Solution

    |