Home
Class 12
MATHS
If A+B+C =pi, show that |["sin"^(2)A,...

If A+B+C =`pi`, show that
`|["sin"^(2)A, "sin A cos A", "cos"^(2)A],["sin"^(2) B, "sin B cos B", "cos"^(2)B],["sin"^(2)C, "sin C cos C", "cos"^(2)C]| =-"sin (A-B)"sin"(B-C)"sin"(C-A)"`

Text Solution

AI Generated Solution

To show that \[ \begin{vmatrix} \sin^2 A & \sin A \cos A & \cos^2 A \\ \sin^2 B & \sin B \cos B & \cos^2 B \\ \sin^2 C & \sin C \cos C & \cos^2 C \end{vmatrix} = -\sin(A-B) \sin(B-C) \sin(C-A) ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    RS AGGARWAL|Exercise Exercise 6A|22 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Exercise 6B|44 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos
  • DIFFERENTIAL EQUATIONS AND THEIR FORMATION

    RS AGGARWAL|Exercise Exercise 18C|16 Videos

Similar Questions

Explore conceptually related problems

If A + B + C = pi, show that | (sin ^ 2A, sinAcosA, cos ^ 2A), (sin ^ 2B, sinBcosB, cos ^ 2B), (sin ^ 2C, sinCcosC, cos ^ 2C) | = - sin (AB) sin (BC) sin (CA)

If A+B+C= 180^(@) , prove that: (i) "sin"^(2)+"sin"^(2)B-"sin"^(2)C=2 "sin"A sin B cos C (ii) "sin"^(2)A-"sin"^(2)B+"sin"^(2) C=2 sin Acos B sin C.

If A+B+C=pi , prove that sin 2A+sin 2B-sin 2C=4 cos A cos B sin C

If A+B+C=180^(@), show that sin2A-sin2B-sin2C=-4sin A cos B cos C

If A+B+C=pi , prove that sin 2A-sin 2B+sin 2C=4cos Asin B cos C.

If A+B+C=pi, prove that sin^(2)A+sin^(2)B+sin^(2)C=2(1+cos A cos B cos C)

If A+B+C=pi then prove that sin2A-sin2B+sin2C=4cos A sin B cos C

If A+B+C=180^(@) , prove that: "sin"^(2) A+"sin"^(2) B+"sin"^(2) C=2(1+cos A cos B cos C) .

sin ^ (2) A + sin ^ (2) B-sin ^ (2) C = 2sin A sin B cos C

If A+B+C=pi , prove that: "sin" A+"sin" B-"sin" C=4 "sin"(A)/(2)"sin"(B)/(2)"cos"(C)/(2) .

RS AGGARWAL-DETERMINANTS-Objective Questions
  1. If A+B+C =pi, show that |["sin"^(2)A, "sin A cos A", "cos"^(2)A],["...

    Text Solution

    |

  2. |["cos"70^(@), "sin"20^(@)], ["sin"70^(@), "cos"20^(@)]|=?

    Text Solution

    |

  3. |["cos"15^(@), "sin"15^(@)], ["sin"15^(@), "cos"15^(@)]|=?

    Text Solution

    |

  4. |["sin"23^(@), -"sin"7^(@)], ["cos"23^(@), "cos"7^(@)]|=?

    Text Solution

    |

  5. Evaluate: |(a+i b, c+i d),(-c+i d, a-i b)|

    Text Solution

    |

  6. Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega,omega)| ...

    Text Solution

    |

  7. If omega is a complex cube root of unity then the value of the determi...

    Text Solution

    |

  8. If A=[[1^2,2^2,3^2],[2^2,3^2,4^2],[3^2,4^2,5^2]] then |AdjA|=

    Text Solution

    |

  9. |(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)|=?

    Text Solution

    |

  10. |[a-b, b-c, c-a], [b-c, c-a, a-b], [c-a, a-b, b-c]|=?

    Text Solution

    |

  11. find |(1, 1+p,1+p+q),(2, 3+2p,1+3p+2q),(3, 6+3p, 1+6 p+3q)|=.

    Text Solution

    |

  12. |{:(1, 1, 1),(a, b, c),(a^(3), b^(3), c^(3)):}|= is equal to

    Text Solution

    |

  13. Without expanding evaluate the determinant |(sinalpha,cosalpha,sin(alp...

    Text Solution

    |

  14. If a, b, c be distinct positive real numbers then the value of |[a, b,...

    Text Solution

    |

  15. Q. |(x+y,x,x),(15x+4y,4x,2x),(10x +8y,8x,3x)|=x^3

    Text Solution

    |

  16. Evaluate the following: |[a^2+2a, 2a+1, 1],[2a+1, a+2, 1],[3,3,1]|

    Text Solution

    |

  17. |[a, a+2b, a+2b+3c], [3a, 4a+6b, 5a+7b+9c], [6a, 9a+12b, 11a+15b+18c]|...

    Text Solution

    |

  18. Prove that|[b+c,a,b],[c+a,c,a],[a+b,b,c]|=(a+b+c)(a-c)^2

    Text Solution

    |

  19. |[1, 1, 1], [1, 1+x, 1], [1, 1, 1+y]|=?

    Text Solution

    |

  20. |[bc, b+c, 1], [ca, c+a, 1], [ab, a+b, 1]|=?

    Text Solution

    |

  21. |[b+c, a, a], [b, c+a, b], [c, c, a+b]|=?

    Text Solution

    |