Home
Class 12
MATHS
Evaluate |[0, 2, 0], [2, 3, 4], [4, 5, 6...

Evaluate `|[0, 2, 0], [2, 3, 4], [4, 5, 6]|`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant of the matrix \[ \begin{vmatrix} 0 & 2 & 0 \\ 2 & 3 & 4 \\ 4 & 5 & 6 \end{vmatrix} \] we can follow these steps: ### Step 1: Set up the determinant We have the matrix: \[ A = \begin{bmatrix} 0 & 2 & 0 \\ 2 & 3 & 4 \\ 4 & 5 & 6 \end{bmatrix} \] ### Step 2: Expand the determinant along the first row Since the first row contains two zeros, it is convenient to expand along this row. The formula for the determinant when expanding along the first row is: \[ |A| = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} \] where \(C_{ij}\) is the cofactor of the element \(a_{ij}\). ### Step 3: Calculate the cofactors - For \(a_{11} = 0\): The term is \(0 \cdot C_{11} = 0\). - For \(a_{12} = 2\): We calculate the cofactor \(C_{12}\): \[ C_{12} = (-1)^{1+2} \begin{vmatrix} 2 & 4 \\ 4 & 6 \end{vmatrix} = -\begin{vmatrix} 2 & 4 \\ 4 & 6 \end{vmatrix} \] Calculating this 2x2 determinant: \[ \begin{vmatrix} 2 & 4 \\ 4 & 6 \end{vmatrix} = (2 \cdot 6) - (4 \cdot 4) = 12 - 16 = -4 \] Thus, \[ C_{12} = -(-4) = 4 \] So, the contribution from this term is: \[ 2 \cdot C_{12} = 2 \cdot 4 = 8 \] - For \(a_{13} = 0\): The term is \(0 \cdot C_{13} = 0\). ### Step 4: Combine the contributions Now we can combine the contributions: \[ |A| = 0 + 8 + 0 = 8 \] ### Final Result Thus, the value of the determinant is \[ \boxed{8} \]

To evaluate the determinant of the matrix \[ \begin{vmatrix} 0 & 2 & 0 \\ 2 & 3 & 4 \\ 4 & 5 & 6 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    RS AGGARWAL|Exercise Exercise 6B|44 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Exercise 6C|8 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos
  • DIFFERENTIAL EQUATIONS AND THEIR FORMATION

    RS AGGARWAL|Exercise Exercise 18C|16 Videos

Similar Questions

Explore conceptually related problems

Find the value of | [ 2 , -3 ,4 ], [ 5 , 0 , 6 ] , [ 7 , 5 , 1 ] |

Evaluate : [[1,3,5]][[1,0,3],[2,0,1],[0,1,2]][[1],[4],[6]]

What is the value of the determinant |0 2 0 2 3 4 4 5 6| ?

Evaluate the following : [[0,2],[0,3]] [[4,6],[0,0]]

The value of |[1,0,6],[7,2,5],[3,4,6]|=......

If A=[(2, 0,-3),( 4, 3, 1),(-5, 7, 2)] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is (a) [(2, 2,-4 ),(2, 3, 4),(-4, 4, 2)] (b) [(2, 4,-5),( 0, 3, 7),(-3, 1, 2)] (c) [(4, 4,-8),( 4, 6, 8),(-8, 8, 4)] (d) [(1, 0 ,0 ),(0 ,1 ,0),( 0, 0, 1)]

The matrix [[0,2,-4],[-2,0,-6],[4,6,0]] is

Evaluate the following determinants by two method : |{:(0,2,0),(2,3,4),(4,5,6):}|

Find the cofactor of a_12 in |[2,-3,5],[6,0,4],[4,5,-7]|

Find the centroid of tetrahedron with vertices K(5, -7, 0), L(1, 5, 3), M(4, -6, 3), N(6, -4, 2) ?

RS AGGARWAL-DETERMINANTS-Exercise 6A
  1. Let A be a square matrix of order 3 x 3 Write the value of |2A| where ...

    Text Solution

    |

  2. If A(i j) is the cofactor of the element a(i j) of the determinant [2-...

    Text Solution

    |

  3. |(x^(2)-x+1, x-1),(x+1,x+1)|

    Text Solution

    |

  4. Evaluate: |[a+ib, c+id],[-c+id, a-ib]|

    Text Solution

    |

  5. Solve : (3x +4)/(7) - (x +5)/(14) = (x)/(28) + (x +1)/(14) The follo...

    Text Solution

    |

  6. If |(2x,5),(8,x)|=|(6,-2),(7,3)| then the value of x is

    Text Solution

    |

  7. If |[2x, x+3], [2(x+1), x+1]| = |[1, 5], [3, 3]|, find the value of x.

    Text Solution

    |

  8. If A = [[3, 4],[1, 2]], find the value of 3|A|

    Text Solution

    |

  9. Evaluate 2|[7, -2], [-10, 5]|

    Text Solution

    |

  10. Evaluate '|[sqrt(6), sqrt(5)], [sqrt(20), sqrt(24)]|

    Text Solution

    |

  11. Evaluate |[2"cos"theta, -2"sin"theta], ["sin" theta, "cos"theta]|

    Text Solution

    |

  12. Evaluate |["cos" alpha, -"sin"alpha], ["sin"alpha, "cos"alpha]|

    Text Solution

    |

  13. Evaluate |["sin" 60^(@), "cos"60^(@)], ["sin" 30^(@), "cos" 30^(@)]|

    Text Solution

    |

  14. Evaluate |["cos" 65^(@), "sin"65^(@)],["sin"25^(@), "cos"25^(@)]|

    Text Solution

    |

  15. Evaluate |["cos" 15^(@), "sin"15^(@)],["sin" 75^(@), "cos"75^(@)]|

    Text Solution

    |

  16. Evaluate |[0, 2, 0], [2, 3, 4], [4, 5, 6]|

    Text Solution

    |

  17. Without expanding the determinant, prove that |[41, 1, 5],[79, 7, 9], ...

    Text Solution

    |

  18. For what value of x, the given matrix A = [[3-2x, x+1],[2, 4]] is a si...

    Text Solution

    |

  19. Evaluate |[14, 9],[-8, -7]|

    Text Solution

    |

  20. Evaluate |[sqrt(3), sqrt(5)],[-sqrt(5), 3sqrt(3)]|

    Text Solution

    |