Home
Class 12
MATHS
tan^(-1)((cosx+sinx)/(cos x-sinx))...

`tan^(-1)((cosx+sinx)/(cos x-sinx))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \tan^{-1}\left(\frac{\cos x + \sin x}{\cos x - \sin x}\right) \), we can follow these steps: ### Step 1: Simplify the Argument of the Inverse Tangent We start with the expression inside the inverse tangent: \[ y = \tan^{-1}\left(\frac{\cos x + \sin x}{\cos x - \sin x}\right) \] ### Step 2: Rewrite the Expression We can rewrite the fraction: \[ \frac{\cos x + \sin x}{\cos x - \sin x} = \frac{\frac{\cos x}{\cos x} + \frac{\sin x}{\cos x}}{\frac{\cos x}{\cos x} - \frac{\sin x}{\cos x}} = \frac{1 + \tan x}{1 - \tan x} \] Thus, we have: \[ y = \tan^{-1}\left(\frac{1 + \tan x}{1 - \tan x}\right) \] ### Step 3: Use the Angle Addition Formula Using the tangent addition formula: \[ \tan\left(\frac{\pi}{4} + x\right) = \frac{\tan\frac{\pi}{4} + \tan x}{1 - \tan\frac{\pi}{4} \tan x} = \frac{1 + \tan x}{1 - \tan x} \] This means: \[ y = \tan^{-1}\left(\tan\left(\frac{\pi}{4} + x\right)\right) \] ### Step 4: Simplify Using the Inverse Function Since the tangent and inverse tangent functions are inverses, we can simplify: \[ y = \frac{\pi}{4} + x \] ### Step 5: Differentiate Now, we differentiate both sides with respect to \( x \): \[ \frac{dy}{dx} = 0 + 1 = 1 \] ### Final Answer Thus, the derivative is: \[ \frac{dy}{dx} = 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10E|24 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10F|66 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10C|19 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate each of the following w.r.t. x: (i) tan^(-1)((1-cosx)/(sinx))" "(ii)tan^(-1)((cos x -sinx)/(cosx +sinx))

Find- tan^-1((cosx+sinx)/(cosx-sinx))

Find the derivative of tan^(-1)((cosx - sinx)/(cosx + sinx)) with respect to 'x'

Express each of the following in the simplest form: tan^(-1){(cosx)/(1-sinx)},\ -pi/2

Prove that tan^(-1)((cosx-sinx)/(cosx+sinx))=(pi/4-x), x lt pi .

cot^(-1)((cosx-sinx)/(cosx+sinx))

tan^(-1) ((cosx - sinx)/(cosx + sinx)) , 0< x < pi

Show that tan^(-1)[(cosx+sinx)/(cosx-sinx)]=(pi)/(4)+x .