Home
Class 12
MATHS
Find (dy)/(dx), when: x^(2)+y^(2)=log(...

Find `(dy)/(dx)`, when:
`x^(2)+y^(2)=log(xy)`

Text Solution

Verified by Experts

The correct Answer is:
`(y(1-2x^(2)))/(x(2y^(2)-1))`

`x^(2)+y^(2)=logx+logy`
`rArr2x+2y(dy)/(dx)=(1)/(x)+(1)/(y).(dy)/(dx).`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10F|66 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10D|51 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: xy^(2)-x^(2)-5=0

Find (dy)/(dx) , when: x^(2)+y^(2)-3xy=1

Find (dy)/(dx) , when: (x^(2)+y^(2))^(2)=xy

Find (dy)/(dx) , when: cot(xy)+xy=y

Find (dy)/(dx), when y=e^(x)log(1+x^(2))

Find (dy)/(dx) of x^(2)+xy+cos^(2)y=1

Find (dy)/(dx) when y= (x^(log x)) ( log x)^(x), x gt 1

Find(dy)/(dx) if (x^(2)+y^(2))^(2)=xy

Find dy/dx in the following : x^(2)+y^(2)=5xy