Home
Class 12
MATHS
Find (dy)/(dx), when: xsin2y=ycos2x...

Find `(dy)/(dx)`, when:
`xsin2y=ycos2x`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \(x \sin(2y) = y \cos(2x)\), we will use implicit differentiation and the product rule. Here’s a step-by-step solution: ### Step 1: Differentiate both sides with respect to \(x\) Starting with the equation: \[ x \sin(2y) = y \cos(2x) \] We differentiate both sides with respect to \(x\). ### Step 2: Apply the product rule on the left side Using the product rule on the left side \(x \sin(2y)\): \[ \frac{d}{dx}(x \sin(2y)) = \sin(2y) \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\sin(2y)) \] This simplifies to: \[ \sin(2y) + x \cdot \cos(2y) \cdot \frac{d(2y)}{dx} \] Using the chain rule, \(\frac{d(2y)}{dx} = 2 \frac{dy}{dx}\), we get: \[ \sin(2y) + 2x \cos(2y) \frac{dy}{dx} \] ### Step 3: Apply the product rule on the right side Now, differentiate the right side \(y \cos(2x)\): \[ \frac{d}{dx}(y \cos(2x)) = \cos(2x) \cdot \frac{dy}{dx} + y \cdot \frac{d}{dx}(\cos(2x)) \] Using the chain rule, \(\frac{d}{dx}(\cos(2x)) = -2 \sin(2x)\), we have: \[ \cos(2x) \frac{dy}{dx} - 2y \sin(2x) \] ### Step 4: Set both derivatives equal Now we have: \[ \sin(2y) + 2x \cos(2y) \frac{dy}{dx} = \cos(2x) \frac{dy}{dx} - 2y \sin(2x) \] ### Step 5: Collect all terms involving \(\frac{dy}{dx}\) Rearranging gives: \[ 2x \cos(2y) \frac{dy}{dx} - \cos(2x) \frac{dy}{dx} = -2y \sin(2x) - \sin(2y) \] Factoring out \(\frac{dy}{dx}\): \[ \left(2x \cos(2y) - \cos(2x)\right) \frac{dy}{dx} = -2y \sin(2x) - \sin(2y) \] ### Step 6: Solve for \(\frac{dy}{dx}\) Thus, we can express \(\frac{dy}{dx}\) as: \[ \frac{dy}{dx} = \frac{-2y \sin(2x) - \sin(2y)}{2x \cos(2y) - \cos(2x)} \] ### Final Answer \[ \frac{dy}{dx} = \frac{-2y \sin(2x) - \sin(2y)}{2x \cos(2y) - \cos(2x)} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10F|66 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10D|51 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=x^(sin2x)

Find (dy)/(dx) , when: y=x^(sinx)

Find (dy)/(dx) when 2x+3y=sin x

Find (dy)/(dx), when x^(2)+y^(2)=4

Find (dy)/(dx) , when: x^(2)+y^(2)=4

Find (dy)/(dx) , when : If y=((cos x - sin x))/((cos x + sin x)) , prove that (dy)/(dx)+y^(2)+1=0 .

Find (dy)/(dx) , when y=sqrt(x)

Find (dy)/(dx) , when: y=x^(sqrtx)

Find (dy)/(dx) , when: x^(2)+y^(2)=log(xy)

Find (dy)/(dx) , when: y=x^(xcosx)+((x^(2)+1)/(x^(2)-1))