Home
Class 12
MATHS
Find (dy)/(dx), when: sin^(2)x+2cosy+x...

Find `(dy)/(dx)`, when:
`sin^(2)x+2cosy+xy=0`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \( \sin^2 x + 2 \cos y + xy = 0 \), we will differentiate both sides of the equation with respect to \(x\). ### Step-by-Step Solution: 1. **Differentiate the equation**: \[ \frac{d}{dx}(\sin^2 x) + \frac{d}{dx}(2 \cos y) + \frac{d}{dx}(xy) = 0 \] 2. **Differentiate \(\sin^2 x\)**: Using the chain rule: \[ \frac{d}{dx}(\sin^2 x) = 2 \sin x \cos x = \sin(2x) \] 3. **Differentiate \(2 \cos y\)**: Using the chain rule: \[ \frac{d}{dx}(2 \cos y) = -2 \sin y \frac{dy}{dx} \] 4. **Differentiate \(xy\)**: Using the product rule: \[ \frac{d}{dx}(xy) = x \frac{dy}{dx} + y \cdot 1 = x \frac{dy}{dx} + y \] 5. **Combine all differentiated parts**: Putting it all together: \[ \sin(2x) - 2 \sin y \frac{dy}{dx} + x \frac{dy}{dx} + y = 0 \] 6. **Rearranging the equation**: Group the terms involving \(\frac{dy}{dx}\): \[ (-2 \sin y + x) \frac{dy}{dx} = -\sin(2x) - y \] 7. **Solve for \(\frac{dy}{dx}\)**: \[ \frac{dy}{dx} = \frac{-\sin(2x) - y}{-2 \sin y + x} \] Simplifying, we get: \[ \frac{dy}{dx} = \frac{\sin(2x) + y}{2 \sin y - x} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{\sin(2x) + y}{2 \sin y - x} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10F|66 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10D|51 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=x^(sin2x)

Find (dy)/(dx) when 2x+3y=sin x

Find (dy)/(dx) , when: xy^(2)-x^(2)-5=0

Find (dy)/(dx) , when: (cosx)^(y)=(cosy)^(x)

Find (dy)/(dx) , when: y=sin2x sin 3x sin 4x

Find (dy)/(dx) , when: x^(2)+y^(2)-3xy=1

Find (dy)/(dx), when y=(sin x+x^(2))/(cot2x)

Find (dy)/(dx) , when: x^(2)+y^(2)=log(xy)

Find (dy)/(dx) , when: ysecx+tanx+x^(2)=0

Find (dy)/(dx) ,if y=sin(x^(2))