Home
Class 12
MATHS
Find (dy)/(dx), when: e^(x)logy=sin^(-...

Find `(dy)/(dx)`, when:
`e^(x)logy=sin^(-1)x+sin^(-1)y`

Text Solution

Verified by Experts

The correct Answer is:
`y.sqrt((1-y^(2))/(1-x^(2))).{(1-e^(x)logy.sqrt(1-x^(2)))/((e^(x)sqrt(1-y^(2)))-y)}`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10F|66 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10D|51 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx where e^x logy = sin^(-1)x + sin^(-1)y

Find (dy)/(dx) , when: y=x^(sin2x)

Find (dy)/(dx), when y=(e^(x)+log x)/(sin3x)

Find (dy)/(dx) , when: y=sin(x^(x))

Find (dy)/(dx) , when: y=e^(x)sin^(3)xcos^(4)x

Find (dy)/(dx) , when: y=(sinx)^(x)+sin^(-1)sqrtx

Find (dy)/(dx) , when: y=2^(x).e^(3x)sin4x

Find (dy)/(dx) when 2x+3y=sin x

Find (dy)/(dx) , when: y=(sin^(-1)x)^(x)

Find (dy)/(dx) , when: y=(xcosx)^(x)+(x sin x)^(1//x)