Home
Class 12
MATHS
Find (dy)/(dx), when: xylog(x+y)=1...

Find `(dy)/(dx)`, when:
`xylog(x+y)=1`

Text Solution

Verified by Experts

The correct Answer is:
`(-(x+y+x^(2)y))/(x^(2){y+(x+y)log(x+y)})`

`ylog(x+y)=(1)/(x)`
`rArry.(1)/((x+y)).(1+(dy)/(dx))+log(x+y).(dy)/(dx)=(-1)/(x^(2))`
`rArr {(y)/((x+y))+log(x+y)}.(dy)/(dx)=-((1)/(x^(2))+(y)/(x+y)).`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10F|66 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10D|51 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=(logx)^(x)

Find (dy)/(dx) , when: y=x^(1//x)

Find (dy)/(dx) , when: y=x^(sinx)

Find (dy)/(dx) , when: y=x^(sqrtx)

Find (dy)/(dx) , when: y=x^(sin2x)

Find (dy)/(dx) when x^(y)=e^(x+y)

Find (dy)/(dx) , when x=alogt,y=bsint

Find (dy)/(dx) , when: y=(e^(x)logx)/(x^(2))

Find (dy)/(dx) , when: logsqrt(x^(2)+y^(2))=tan^(-1).(y)/(x)

Find (dy)/(dx) , when: e^(x)logy=sin^(-1)x+sin^(-1)y