Home
Class 12
MATHS
Find (dy)/(dx), when: tan(x+y)+tan(x-y...

Find `(dy)/(dx)`, when:
`tan(x+y)+tan(x-y)=1`

Text Solution

Verified by Experts

The correct Answer is:
`(sec^(2)(x+y)+sec^(2)(x-y))/(sec^(2)(x-y)-sec^(2)(x+y))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10F|66 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10D|51 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx)+y sec x=tan x

Find (dy)/(dx) , when: logsqrt(x^(2)+y^(2))=tan^(-1).(y)/(x)

find (dy)/(dx), when y=tan^(-1)((2x)/(1-x^(2)))

Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/(a+x)),-a

Find (dy)/(dx) in the following: xy+y^(2)=tan x+y

(dy)/(dx)+y tan x=sec x

(dy)/(dx)=1+x tan(y-x)

Find (dy)/(dx) if,tan ^(-1)(x^(2)+y^(2))=a

Find the particular solution of the following : (dy)/(dx)= y tan x , given that y=1 when x=0 .