Home
Class 12
MATHS
If ylog x=(x-y), prove that (dy)/(dx)=(l...

If `ylog x=(x-y)`, prove that `(dy)/(dx)=(logx)/((1+logx)^(2))`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10F|66 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10G|8 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10D|51 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

y=x^(logx)+(logx)^(x)

If x^y= y^x , prove that (dy)/(dx)=((y/x-logy))/((x/y-logx))

x(dy)/(dx)=y(logy-logx+1)

"If "y=a^(x^(a^(x...oo)))", prove that "(dy)/(dx)=(y^(2)(logy))/(x[1-y(logx)(logy)]).

Solve x(dy)/(dx)=y(logy-logx+1)

int1/(x(1-logx)^(2))dx=

x (dy)/(dx) + y = x logx

Solve: x(dy)/(dx)=y(logy-logx-1)