Home
Class 12
MATHS
(i) int (tanx)/((secx + tanx))dx ,(ii) i...

(i) `int (tanx)/((secx + tanx))dx` ,(ii) `int(cosecx)/((cosecx- cotx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the two integration problems step by step. ### Problem (i): \[ \int \frac{\tan x}{\sec x + \tan x} \, dx \] **Step 1: Multiply by the conjugate** We multiply the numerator and the denominator by the conjugate of the denominator, which is \(\sec x - \tan x\): \[ \int \frac{\tan x (\sec x - \tan x)}{(\sec x + \tan x)(\sec x - \tan x)} \, dx \] **Step 2: Simplify the denominator** Using the identity \((a+b)(a-b) = a^2 - b^2\), we simplify the denominator: \[ \sec^2 x - \tan^2 x = 1 \] Thus, the integral becomes: \[ \int \frac{\tan x (\sec x - \tan x)}{1} \, dx = \int \tan x (\sec x - \tan x) \, dx \] **Step 3: Expand the integrand** Now we expand the integrand: \[ \int (\tan x \sec x - \tan^2 x) \, dx \] **Step 4: Separate the integral** We can separate the integral into two parts: \[ \int \tan x \sec x \, dx - \int \tan^2 x \, dx \] **Step 5: Integrate each term** 1. The integral of \(\tan x \sec x\) is \(\sec x\). 2. The integral of \(\tan^2 x\) can be rewritten using the identity \(\tan^2 x = \sec^2 x - 1\): \[ \int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx = \int \sec^2 x \, dx - \int 1 \, dx = \tan x - x \] Putting it all together: \[ \int \tan x \sec x \, dx - \int \tan^2 x \, dx = \sec x - (\tan x - x) = \sec x - \tan x + x + C \] ### Final Answer for Problem (i): \[ \int \frac{\tan x}{\sec x + \tan x} \, dx = \sec x - \tan x + x + C \] --- ### Problem (ii): \[ \int \frac{\csc x}{\csc x - \cot x} \, dx \] **Step 1: Multiply by the conjugate** We multiply the numerator and the denominator by the conjugate of the denominator, which is \(\csc x + \cot x\): \[ \int \frac{\csc x (\csc x + \cot x)}{(\csc x - \cot x)(\csc x + \cot x)} \, dx \] **Step 2: Simplify the denominator** Using the identity \((a-b)(a+b) = a^2 - b^2\), we simplify the denominator: \[ \csc^2 x - \cot^2 x = 1 \] Thus, the integral becomes: \[ \int \frac{\csc x (\csc x + \cot x)}{1} \, dx = \int \csc x (\csc x + \cot x) \, dx \] **Step 3: Expand the integrand** Now we expand the integrand: \[ \int (\csc^2 x + \csc x \cot x) \, dx \] **Step 4: Integrate each term** 1. The integral of \(\csc^2 x\) is \(-\cot x\). 2. The integral of \(\csc x \cot x\) is \(-\csc x\). Putting it all together: \[ \int \csc^2 x \, dx + \int \csc x \cot x \, dx = -\cot x - \csc x + C \] ### Final Answer for Problem (ii): \[ \int \frac{\csc x}{\csc x - \cot x} \, dx = -\cot x - \csc x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

int(cotx)/(cosecx-cotx)dx=

int_0^pi (xtanx)/(secx+tanx)dx

int cosecx(cosec x + cot x) dx = ?

(i) int(tanx)/((sec x +tanx))dx , (ii) int(1)/((1-sinx))dx

(i) intsecx (secx +tanx) dx (ii) intcosec x(cosecx + cot x)dx

int(secx)/(log(secx+tanx))dx=

int((secx)/(secx-tanx))dx equals

int(1)/(secx+tanx)dx=

int(sec^(8)x)/(cosecx) dx =