Home
Class 12
MATHS
(i) int(1)/((1+cos2x))dx , (ii) int (1)/...

(i) `int(1)/((1+cos2x))dx` , (ii) `int (1)/((1-cos2x)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the integrals step by step. ### Part (i): \(\int \frac{1}{1 + \cos 2x} \, dx\) 1. **Use the identity for \(\cos 2x\)**: \[ \cos 2x = 2\cos^2 x - 1 \] Therefore, \[ 1 + \cos 2x = 1 + (2\cos^2 x - 1) = 2\cos^2 x \] 2. **Rewrite the integral**: \[ \int \frac{1}{1 + \cos 2x} \, dx = \int \frac{1}{2\cos^2 x} \, dx = \frac{1}{2} \int \sec^2 x \, dx \] 3. **Integrate \(\sec^2 x\)**: The integral of \(\sec^2 x\) is: \[ \int \sec^2 x \, dx = \tan x + C \] 4. **Combine the results**: Thus, \[ \frac{1}{2} \int \sec^2 x \, dx = \frac{1}{2} (\tan x + C) = \frac{1}{2} \tan x + C \] ### Final Answer for Part (i): \[ \int \frac{1}{1 + \cos 2x} \, dx = \frac{1}{2} \tan x + C \] --- ### Part (ii): \(\int \frac{1}{1 - \cos 2x} \, dx\) 1. **Use the identity for \(\cos 2x\)**: \[ \cos 2x = 1 - 2\sin^2 x \] Therefore, \[ 1 - \cos 2x = 1 - (1 - 2\sin^2 x) = 2\sin^2 x \] 2. **Rewrite the integral**: \[ \int \frac{1}{1 - \cos 2x} \, dx = \int \frac{1}{2\sin^2 x} \, dx = \frac{1}{2} \int \csc^2 x \, dx \] 3. **Integrate \(\csc^2 x\)**: The integral of \(\csc^2 x\) is: \[ \int \csc^2 x \, dx = -\cot x + C \] 4. **Combine the results**: Thus, \[ \frac{1}{2} \int \csc^2 x \, dx = \frac{1}{2} (-\cot x + C) = -\frac{1}{2} \cot x + C \] ### Final Answer for Part (ii): \[ \int \frac{1}{1 - \cos 2x} \, dx = -\frac{1}{2} \cot x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

int(1)/(1-cos 2x) dx

Evaluate: (i) int(1)/(sqrt(1+cos2x))dx (ii) int(1)/(sqrt(1-cos x))dx

int(1)/( 1+cos 2x ) dx

Evaluate: (i) int(1)/(sqrt(1-cos2x))dx (ii) int(1)/(sqrt(1+cos x))dx

int(1)/(1+cos^(2)x)dx

int(1)/(2+cos 2x)dx=

int(x)/(1+cos2x)dx

int(1)/(1-cos^(2)x)*dx=

int(1)/(1-cos^(2)x)dx=

Evaluate: (i) int(2)/(1+cos2x)dx (ii) int(2)/(1-cos2x)dx