Home
Class 12
MATHS
int sqrt(1+sin2x)dx...

`int sqrt(1+sin2x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{1 + \sin 2x} \, dx \), we will follow these steps: ### Step 1: Use the identity for \( \sin 2x \) We know that: \[ \sin 2x = 2 \sin x \cos x \] So we can rewrite the integral as: \[ \int \sqrt{1 + 2 \sin x \cos x} \, dx \] **Hint:** Remember that \( \sin 2x \) can be expressed in terms of \( \sin x \) and \( \cos x \). ### Step 2: Rewrite \( 1 \) using the Pythagorean identity We can express \( 1 \) as \( \sin^2 x + \cos^2 x \): \[ 1 + 2 \sin x \cos x = \sin^2 x + \cos^2 x + 2 \sin x \cos x \] **Hint:** Use the identity \( \sin^2 x + \cos^2 x = 1 \) to combine terms. ### Step 3: Recognize the expression as a perfect square The expression \( \sin^2 x + \cos^2 x + 2 \sin x \cos x \) can be factored as: \[ (\sin x + \cos x)^2 \] Thus, we can rewrite the integral: \[ \int \sqrt{(\sin x + \cos x)^2} \, dx \] **Hint:** Recognize that the square root of a square gives the absolute value, but since \( \sin x + \cos x \) is positive in the intervals we are considering, we can simplify it to: \[ \int (\sin x + \cos x) \, dx \] ### Step 4: Integrate the expression Now we can integrate: \[ \int (\sin x + \cos x) \, dx = \int \sin x \, dx + \int \cos x \, dx \] The integrals are: \[ -\cos x + \sin x + C \] **Hint:** Remember the basic integrals of sine and cosine. ### Final Answer Thus, the final answer is: \[ \int \sqrt{1 + \sin 2x} \, dx = -\cos x + \sin x + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

int sqrt(1-sin 2x) dx

Solve the following integration int sqrt(1-sin 2x)dx

Knowledge Check

  • int sqrt(1+sin 2x)dx=

    A
    `sinx+cosx+c AA x in R`
    B
    `sinx-cos x+cAA x in R`
    C
    `sin x-cosx+c, x in [(-pi)/(4),(3pi)/(4)]`
    D
    `cosx-sinx+c, x in [(3pi)/(4),(7pi)/(4)]`
  • int_(0)^((pi)/(4)) sqrt(1+sin 2x) dx =

    A
    `(1)/(sqrt""2)`
    B
    `sqrt""2+1`
    C
    `2 sqrt""2`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    int sin x sqrt(1-sin2x)dx

    int sqrt(1+sin x)dx=2(sin((x)/(2))-cos((x)/(2)))+c=2sqrt(1-sin x)+c

    Find the Definite Integrals : int_0^(pi/4) sqrt(1-sin2x) dx

    int(cos x-sin x)/(sqrt(sin2x))dx

    Evaluate: int_(0)^( pi/4)sqrt(1+sin2x)dx (ii) int_(0)^( pi/4)sqrt(1-sin2x)dx

    (i) int sqrt(1+ sin .(x)/(2)dx) (ii) int (1+cos 4x)/(cot x- tan x)dx