Home
Class 12
MATHS
int tan^(-1) ((sin2x)/(1+cos 2x))dx...

`int tan^(-1) ((sin2x)/(1+cos 2x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan^{-1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx \), we will use trigonometric identities to simplify the expression inside the integral. ### Step-by-Step Solution: 1. **Use Trigonometric Identities**: We know the following identities: - \( \sin 2x = 2 \sin x \cos x \) - \( \cos 2x = 2 \cos^2 x - 1 \) From the cosine identity, we can express \( 1 + \cos 2x \): \[ 1 + \cos 2x = 1 + (2 \cos^2 x - 1) = 2 \cos^2 x \] 2. **Substitute into the Integral**: Substitute \( \sin 2x \) and \( 1 + \cos 2x \) into the integral: \[ \int \tan^{-1} \left( \frac{2 \sin x \cos x}{2 \cos^2 x} \right) dx \] 3. **Simplify the Expression**: The expression simplifies as follows: \[ \frac{2 \sin x \cos x}{2 \cos^2 x} = \frac{\sin x}{\cos x} = \tan x \] Therefore, the integral becomes: \[ \int \tan^{-1}(\tan x) \, dx \] 4. **Evaluate the Integral**: Since \( \tan^{-1}(\tan x) = x \) for \( x \) in the principal range of \( \tan^{-1} \), we have: \[ \int x \, dx \] 5. **Integrate**: The integral of \( x \) is: \[ \frac{x^2}{2} + C \] ### Final Answer: Thus, the final result of the integral is: \[ \int \tan^{-1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx = \frac{x^2}{2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int tan^(-1)((sin2x)/(1+cos2x))dx

Evaluate: (i) int tan^(-1)((sin2x)/(1+cos2x))dx( ii) int cos^(-1)(sin x)dx

Evaluate: (i) int cot^(-1)((sin2x)/(1-cos2x))dx (ii) int sin^(-1)((2tan x)/(1+tan^(2)x))dx

(i) int e^(2x) ((1+sin2x)/(1+cos2x)) dx (ii) int e^(2x) ((sin4x-2)/(1-cos4x))

int(sin2x)/(1+cos x)^2dx

Evaluate: int e^(2x)((1+sin2x)/(1+cos2x))dx

Evaluate: int e^(2x)((1-sin2x)/(1-cos2x))dx

Evaluate: inte^(2x)\ ((1+sin2x)/(1+cos2x))\ dx

int (sin 2x)/(1+cos^2x)dx=

int(sin2x)/(1+cos^(2)x)dx