Home
Class 12
MATHS
intcos^(-1) ((1+tan^(2)x)/(1+tan^(2) x))...

`intcos^(-1) ((1+tan^(2)x)/(1+tan^(2) x)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos^{-1} \left( \frac{1 - \tan^2 x}{1 + \tan^2 x} \right) dx \), we can follow these steps: ### Step 1: Simplify the Expression Inside the Integral We know that: \[ \frac{1 - \tan^2 x}{1 + \tan^2 x} = \cos(2x) \] This is derived from the double angle formula for cosine. Therefore, we can rewrite the integral as: \[ \int \cos^{-1}(\cos(2x)) \, dx \] ### Step 2: Apply the Property of Inverse Cosine Using the property that \( \cos^{-1}(\cos(y)) = y \) for \( y \) in the range of \( [0, \pi] \), we can simplify: \[ \int \cos^{-1}(\cos(2x)) \, dx = \int 2x \, dx \] ### Step 3: Integrate Now, we can integrate \( 2x \): \[ \int 2x \, dx = 2 \cdot \frac{x^2}{2} + C = x^2 + C \] ### Final Answer Thus, the final answer is: \[ \int \cos^{-1} \left( \frac{1 - \tan^2 x}{1 + \tan^2 x} \right) dx = x^2 + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

Evaluate int cos^(-1)((1-tan^2x)/(1+tan^(2)x))dx

int(1+tan^(2)x)/(1-tan^(2)x)dx

int(1-tan^(2)x)/(1+tan^(2)x)dx

int(1+tan^(2)x)/(1+cot^(2)x)dx

intcos^-1((1-tan^2x)/(1+tan^2x))dx

int(1+tan^(2)x)/(1+cot^(2)x)dx-

int(2tan x)/(1+tan^(2)x)dx

intcos^(-1)((1-x^(2))/(1+x^(2)))dx=?

int(1+tan^2x)/(1-tan^2x)dx=

int(1)/(1+tan ^(2)x)dx