Home
Class 12
MATHS
int cos^(-1) (sinx) dx...

`int cos^(-1) (sinx) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos^{-1}(\sin x) \, dx \), we will follow the steps outlined in the video solution. ### Step-by-step Solution: 1. **Rewrite the Integral**: We start with the integral: \[ I = \int \cos^{-1}(\sin x) \, dx \] We know that \( \sin x = \cos\left(\frac{\pi}{2} - x\right) \). Therefore, we can rewrite the integral as: \[ I = \int \cos^{-1}\left(\cos\left(\frac{\pi}{2} - x\right)\right) \, dx \] 2. **Apply the Inverse Cosine Identity**: The property of the inverse cosine function states that \( \cos^{-1}(\cos(a)) = a \) when \( a \) is in the range of \( \cos^{-1} \). Thus, we have: \[ I = \int \left(\frac{\pi}{2} - x\right) \, dx \] 3. **Separate the Integral**: We can separate the integral into two parts: \[ I = \int \frac{\pi}{2} \, dx - \int x \, dx \] 4. **Integrate Each Part**: Now we integrate each term separately: - The integral of a constant: \[ \int \frac{\pi}{2} \, dx = \frac{\pi}{2} x \] - The integral of \( x \): \[ \int x \, dx = \frac{x^2}{2} \] 5. **Combine the Results**: Putting it all together, we have: \[ I = \frac{\pi}{2} x - \frac{x^2}{2} + C \] where \( C \) is the constant of integration. ### Final Answer: Thus, the final result for the integral \( \int \cos^{-1}(\sin x) \, dx \) is: \[ \int \cos^{-1}(\sin x) \, dx = \frac{\pi}{2} x - \frac{x^2}{2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

int cos^(3)x sinx dx

int(cos^7x)/(sinx)dx=

int(cos^(2)x)/(1+sinx)dx+int(sin^(2)x)/(1-cosx)dx=

int e^x( cos x+sinx)dx

Evaluate : (i) int cos^(3)xsinxdx (ii) int(sqrt(sinx))cosxdx (iii) int(cosec^(2)x)/((1+cotx))dx (iv) int(sinx)/((3+4cosx)^(2))dx

int(cos 2x)/(sinx)dx=

int(1)/(1-sinx) dx

int (1)/(cos x-sinx )dx= …

Evaluate : int(1+cos x)/(x+sinx)dx .