Home
Class 12
MATHS
int(3cotx - 2 tanx)^(2) dx...

`int(3cotx - 2 tanx)^(2) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (3 \cot x - 2 \tan x)^2 \, dx \), we will follow these steps: ### Step 1: Expand the integrand We start by expanding the expression \( (3 \cot x - 2 \tan x)^2 \): \[ (3 \cot x - 2 \tan x)^2 = (3 \cot x)^2 - 2 \cdot (3 \cot x)(2 \tan x) + (2 \tan x)^2 \] This simplifies to: \[ 9 \cot^2 x - 12 \cot x \tan x + 4 \tan^2 x \] ### Step 2: Rewrite the integral Now we can rewrite the integral: \[ \int (3 \cot x - 2 \tan x)^2 \, dx = \int (9 \cot^2 x - 12 \cot x \tan x + 4 \tan^2 x) \, dx \] ### Step 3: Use trigonometric identities We can use the identities \( \cot^2 x = \frac{\cos^2 x}{\sin^2 x} \) and \( \tan^2 x = \frac{\sin^2 x}{\cos^2 x} \). Also, we know that \( \cot x \tan x = 1 \). Thus, we can rewrite the integral: \[ = \int \left( 9 \cot^2 x + 4 \tan^2 x - 12 \right) \, dx \] ### Step 4: Substitute the identities Using the identity \( \cot^2 x = \csc^2 x - 1 \) and \( \tan^2 x = \sec^2 x - 1 \): \[ = \int \left( 9 (\csc^2 x - 1) + 4 (\sec^2 x - 1) - 12 \right) \, dx \] This simplifies to: \[ = \int \left( 9 \csc^2 x + 4 \sec^2 x - 9 - 4 - 12 \right) \, dx \] \[ = \int \left( 9 \csc^2 x + 4 \sec^2 x - 25 \right) \, dx \] ### Step 5: Integrate each term Now we can integrate each term separately: \[ = 9 \int \csc^2 x \, dx + 4 \int \sec^2 x \, dx - 25 \int dx \] The integrals are: - \( \int \csc^2 x \, dx = -\cot x \) - \( \int \sec^2 x \, dx = \tan x \) - \( \int dx = x \) So we have: \[ = 9(-\cot x) + 4\tan x - 25x + C \] ### Final Answer Thus, the final result is: \[ -9 \cot x + 4 \tan x - 25x + C \]

To solve the integral \( \int (3 \cot x - 2 \tan x)^2 \, dx \), we will follow these steps: ### Step 1: Expand the integrand We start by expanding the expression \( (3 \cot x - 2 \tan x)^2 \): \[ (3 \cot x - 2 \tan x)^2 = (3 \cot x)^2 - 2 \cdot (3 \cot x)(2 \tan x) + (2 \tan x)^2 \] This simplifies to: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

int((cotx)/(sinx) - tan^(2)x -(tanx)/(cosx) + 2/(cosx)) dx

Evaluate int(secx+tanx)^(2)dx

int(secx+tanx)^(2)dx=

int((1-tanx)/(1+tanx))^(2)dx=

int((1+tan)/(1-tanx))^(2)dx=

(tanx-cotx)^(2)

int tanx sec^(2)x*dx

Evaluate the following integrals: int(2tanx-3cotx)^(2)dx

int(2tanx)/(2+3tan^(2)x)dx=

Evaluate int sec^2x/(1+tanx)^(3/2)dx