Home
Class 12
MATHS
int ((1+cosx)/(1-cosx)) dx...

`int ((1+cosx)/(1-cosx)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 + \cos x}{1 - \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ \int \frac{1 + \cos x}{1 - \cos x} \, dx \] ### Step 2: Use trigonometric identities We can use the identities for \(1 + \cos x\) and \(1 - \cos x\): \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \] Substituting these into the integral gives: \[ \int \frac{2 \cos^2\left(\frac{x}{2}\right)}{2 \sin^2\left(\frac{x}{2}\right)} \, dx \] This simplifies to: \[ \int \frac{\cos^2\left(\frac{x}{2}\right)}{\sin^2\left(\frac{x}{2}\right)} \, dx = \int \cot^2\left(\frac{x}{2}\right) \, dx \] ### Step 3: Substitute Let \( t = \frac{x}{2} \), then \( dx = 2 \, dt \). The integral becomes: \[ \int \cot^2(t) \cdot 2 \, dt = 2 \int \cot^2(t) \, dt \] ### Step 4: Use the identity for cotangent Using the identity \( \cot^2(t) = \csc^2(t) - 1 \), we can rewrite the integral: \[ 2 \int \cot^2(t) \, dt = 2 \int (\csc^2(t) - 1) \, dt \] This separates into two integrals: \[ 2 \left( \int \csc^2(t) \, dt - \int 1 \, dt \right) \] ### Step 5: Integrate The integral of \( \csc^2(t) \) is \( -\cot(t) \) and the integral of \( 1 \) is \( t \): \[ 2 \left( -\cot(t) - t \right) + C = -2\cot(t) - 2t + C \] ### Step 6: Substitute back Now substitute back \( t = \frac{x}{2} \): \[ -2\cot\left(\frac{x}{2}\right) - 2\left(\frac{x}{2}\right) + C = -2\cot\left(\frac{x}{2}\right) - x + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1 + \cos x}{1 - \cos x} \, dx = -2\cot\left(\frac{x}{2}\right) - x + C \]

To solve the integral \( \int \frac{1 + \cos x}{1 - \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ \int \frac{1 + \cos x}{1 - \cos x} \, dx \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

int e^x((1-sinx)/(1-cosx)) dx is equal to

int(1-cosx)/(cosx(1+cosx))dx

Knowledge Check

  • int(cosx)/(1-cosx)dx=

    A
    `2cot((x)/(2))+x+c`
    B
    `2cot((x)/(2))-x+c`
    C
    `cot((x)/(2))+x+c`
    D
    `-cot((x)/(2))-x+c`
  • int(sqrt(1+cosx))/(1-cosx)dx=

    A
    `-sqrt2 cosec((x)/(2))+c`
    B
    `sqrt2 cos ((x)/(2))+c`
    C
    `-sqrt2 sec((x)/(2))+c`
    D
    `log[cos((x)/(2))]+c`
  • int (cosx-cos2x)/(1-cosx) dx

    A
    ` 2 sin x + x + C`
    B
    ` 2 sin x - x + C`
    C
    ` cos x + x + C`
    D
    ` 2 cos x + x + C`
  • Similar Questions

    Explore conceptually related problems

    int(1-cosx)/(cosx(1+cosx))dx

    int_0^pi sqrt(1+cosx)/(1-cosx)^(5//2) dx

    int(dx)/(cosx(1-cosx))=

    int(cosx)/(1+cosx)dx=

    int(cosx)/((1+cosx))dx=?