Home
Class 12
MATHS
int ((1+tanx)/(1-tanx))dx...

`int ((1+tanx)/(1-tanx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 + \tan x}{1 - \tan x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral Start by rewriting the integral in terms of sine and cosine: \[ \tan x = \frac{\sin x}{\cos x} \] Thus, we can express \( 1 + \tan x \) and \( 1 - \tan x \) as: \[ 1 + \tan x = 1 + \frac{\sin x}{\cos x} = \frac{\cos x + \sin x}{\cos x} \] \[ 1 - \tan x = 1 - \frac{\sin x}{\cos x} = \frac{\cos x - \sin x}{\cos x} \] Now substituting these into the integral: \[ \int \frac{1 + \tan x}{1 - \tan x} \, dx = \int \frac{\frac{\cos x + \sin x}{\cos x}}{\frac{\cos x - \sin x}{\cos x}} \, dx = \int \frac{\cos x + \sin x}{\cos x - \sin x} \, dx \] ### Step 2: Simplify the integral Now, we can simplify the integral: \[ \int \frac{\cos x + \sin x}{\cos x - \sin x} \, dx \] ### Step 3: Use substitution Let \( t = \cos x - \sin x \). Then, we differentiate: \[ dt = (-\sin x - \cos x) \, dx \quad \Rightarrow \quad dx = \frac{dt}{-\sin x - \cos x} \] Now we need to express \( \cos x + \sin x \) in terms of \( t \): \[ \cos x + \sin x = \sqrt{(\cos x - \sin x)^2 + 2\sin x \cos x} = \sqrt{t^2 + 2\sin x \cos x} \] However, we can also notice that: \[ \sin x + \cos x = -dt \] Thus, we can write: \[ \int \frac{\cos x + \sin x}{\cos x - \sin x} \, dx = \int \frac{-dt}{t} \] ### Step 4: Integrate Now, we can integrate: \[ \int \frac{-dt}{t} = -\ln |t| + C \] ### Step 5: Substitute back Substituting back \( t = \cos x - \sin x \): \[ -\ln |\cos x - \sin x| + C \] ### Step 6: Final answer Thus, the final answer is: \[ \int \frac{1 + \tan x}{1 - \tan x} \, dx = -\ln |\cos x - \sin x| + C \]

To solve the integral \( \int \frac{1 + \tan x}{1 - \tan x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral Start by rewriting the integral in terms of sine and cosine: \[ \tan x = \frac{\sin x}{\cos x} \] Thus, we can express \( 1 + \tan x \) and \( 1 - \tan x \) as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

int((1+tan)/(1-tanx))^(2)dx=

int((1-tanx)/(1+tanx))^(2)dx=

int(1+tan^(2)x)/(1+tanx)dx=

int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

int(tanx)/((1-sinx))dx

int_(-pi//4)^0 (1+tanx)/(1-tanx) dx

int(tanx)/(secx+tanx)dx=

The value of int_(0)^(-pi//4)(1+tanx)/(1-tanx)dx is

If y=sqrt((1+tanx)/(1-tanx))," then: "(dy)/(dx)=

int(sec^(2)x)/((1+tanx))dx