Home
Class 12
MATHS
int(1-x)sqrt(x) dx...

`int(1-x)sqrt(x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (1 - x) \sqrt{x} \, dx \), we can break it down into simpler parts. Here are the steps: ### Step 1: Expand the integrand We start by expanding the integrand: \[ \int (1 - x) \sqrt{x} \, dx = \int \sqrt{x} \, dx - \int x \sqrt{x} \, dx \] ### Step 2: Rewrite the integrals Next, we rewrite \( \sqrt{x} \) and \( x \sqrt{x} \) in terms of powers of \( x \): \[ \sqrt{x} = x^{1/2} \quad \text{and} \quad x \sqrt{x} = x^{1} \cdot x^{1/2} = x^{3/2} \] Thus, we can express the integral as: \[ \int \sqrt{x} \, dx - \int x^{3/2} \, dx = \int x^{1/2} \, dx - \int x^{3/2} \, dx \] ### Step 3: Integrate each term Now we can integrate each term separately. The formula for integrating \( x^n \) is: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] **For the first integral:** \[ \int x^{1/2} \, dx = \frac{x^{1/2 + 1}}{1/2 + 1} = \frac{x^{3/2}}{3/2} = \frac{2}{3} x^{3/2} \] **For the second integral:** \[ \int x^{3/2} \, dx = \frac{x^{3/2 + 1}}{3/2 + 1} = \frac{x^{5/2}}{5/2} = \frac{2}{5} x^{5/2} \] ### Step 4: Combine the results Now we combine the results of the integrals: \[ \int (1 - x) \sqrt{x} \, dx = \frac{2}{3} x^{3/2} - \frac{2}{5} x^{5/2} + C \] ### Final Answer Thus, the final answer is: \[ \int (1 - x) \sqrt{x} \, dx = \frac{2}{3} x^{3/2} - \frac{2}{5} x^{5/2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

int(1-x)sqrt(1+x)dx

.Evaluate int(1-x^2)sqrt(x)dx

int(x-1)sqrt(x+1)dx

int(1)/(sqrt(x)+x)dx

(i) int(x)/(1+sqrt(x))dx

(i) int(x)/(1+sqrt(x))dx

(a) Evaluate: int(x)/(1+sqrt(x))dx

Evaluate; int(x)/(1+sqrt(x))dx

Evaluate: int(1)/(sqrt(x)+x)dx

int (1+x)^3/sqrt x dx