Home
Class 12
MATHS
int (sec^(2)x)/(cosec^(2)x) dx...

`int (sec^(2)x)/(cosec^(2)x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sec^2 x}{\csc^2 x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand using the definitions of secant and cosecant: \[ \sec^2 x = \frac{1}{\cos^2 x} \quad \text{and} \quad \csc^2 x = \frac{1}{\sin^2 x} \] Thus, we can rewrite the integral as: \[ \int \frac{\sec^2 x}{\csc^2 x} \, dx = \int \frac{\frac{1}{\cos^2 x}}{\frac{1}{\sin^2 x}} \, dx = \int \frac{\sin^2 x}{\cos^2 x} \, dx \] ### Step 2: Simplify the integrand The expression \( \frac{\sin^2 x}{\cos^2 x} \) can be simplified to: \[ \frac{\sin^2 x}{\cos^2 x} = \tan^2 x \] So the integral now becomes: \[ \int \tan^2 x \, dx \] ### Step 3: Use the identity for tangent We can use the identity \( \tan^2 x = \sec^2 x - 1 \) to rewrite the integral: \[ \int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx \] ### Step 4: Split the integral Now, we can split the integral into two parts: \[ \int (\sec^2 x - 1) \, dx = \int \sec^2 x \, dx - \int 1 \, dx \] ### Step 5: Integrate each part We know that: \[ \int \sec^2 x \, dx = \tan x + C \] and \[ \int 1 \, dx = x \] Thus, we have: \[ \int \tan^2 x \, dx = \tan x - x + C \] ### Final Answer Therefore, the final result of the integral is: \[ \int \frac{\sec^2 x}{\csc^2 x} \, dx = \tan x - x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int(sec^(2)x+csc^(2)x)dx

int (sec^(8)x)/("cosec"x)dx=

Evaluate: int sec^(2)x csc^(2)xdx

int sec^(2/3)x cosec^(4/3)xdx

int sec^(4)x cosec^(2)x dx is equal to

int(sec^(8)x)/("cosec x")dx=

int ("cosec"^(2)x)/((1-cot^(2)x))dx=?

int e^(x)cosec^(2)(e^(x))dx

Integrate : int ( sec^2x dx )/ ( cosec^2x )

int (sec^4x.cosec"^2x) dx=