Home
Class 12
MATHS
Evaluate int(cosx)/((sin^(2)x+4sinx+5))d...

Evaluate `int(cosx)/((sin^(2)x+4sinx+5))dx`.

Text Solution

Verified by Experts

Putting `sinx=t " and "cosx dx=dt` we get
`int(cosx)/((sin^(2)x+4sinx+5))dx=int(dt)/((t^(2)+4t+5))=int(dt)/({(t^(2)+4t+4)+1}}`
`=int(dt)/({(t+2)^(2)+1^(2)}}=int(du)/((u^(2)+1)), "where "u=(t+2)`
`=tan^(-1)u+C=tan^(-1)(t+2)+C`
`=tan^(-1)(sinx+2)+C`.
Promotional Banner

Topper's Solved these Questions

  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14A|40 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14B|44 Videos
  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(cosx)/(sin^2x+4sinx+5)\ dx

int(cosx)/(sqrt(sin^2x-2sinx+5))dx=

int(cosx)/(3sin^2x-4sinx+1)dx=

int(cosx)/((1+sinx)(2+sin x))dx

int(cosx)/(sqrt(sin^2x-sinx-3))dx=

Evaluate: int(cosx-sinx)/(1+sin2x)dx

Evaluate: int(sinx-cosx)/(sqrt(sin2x))\ dx

Evaluate: int(2cosx-3sinx)/(6cosx+4sinx)dx

Evaluate: int(2sinx+3cosx)/(3sinx+4cosx)dx

Evaluate int (dx)/(sinx+cosx)^2