Home
Class 12
MATHS
int(x)/(sqrt(9-x^(4)))dx...

`int(x)/(sqrt(9-x^(4)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x}{\sqrt{9 - x^4}} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = x^2 \). Then, the differential \( dt = 2x \, dx \) or \( dx = \frac{dt}{2x} \). ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ x = \sqrt{t} \quad \text{and} \quad x^4 = t^2 \] Thus, the integral becomes: \[ \int \frac{\sqrt{t}}{\sqrt{9 - t^2}} \cdot \frac{dt}{2\sqrt{t}} = \int \frac{1}{2\sqrt{9 - t^2}} \, dt \] ### Step 3: Simplify the Integral Now, we can simplify the integral: \[ \int \frac{1}{2\sqrt{9 - t^2}} \, dt \] This can be factored out as: \[ \frac{1}{2} \int \frac{1}{\sqrt{9 - t^2}} \, dt \] ### Step 4: Use the Standard Integral Formula The integral \( \int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \left( \frac{x}{a} \right) + C \) applies here, where \( a = 3 \): \[ \frac{1}{2} \cdot \sin^{-1} \left( \frac{t}{3} \right) + C \] ### Step 5: Substitute Back Now, substitute back \( t = x^2 \): \[ \frac{1}{2} \sin^{-1} \left( \frac{x^2}{3} \right) + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{x}{\sqrt{9 - x^4}} \, dx = \frac{1}{2} \sin^{-1} \left( \frac{x^2}{3} \right) + C \] ---

To solve the integral \( \int \frac{x}{\sqrt{9 - x^4}} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = x^2 \). Then, the differential \( dt = 2x \, dx \) or \( dx = \frac{dt}{2x} \). ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14A|40 Videos
  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos

Similar Questions

Explore conceptually related problems

int(x)/(sqrt(9-x^(2)))dx

int(x)/(sqrt(1-x^(4)))dx

int(x)/(sqrt(9+x^(2)))dx

int(dx)/(sqrt(9-4x^(2)))

int(x+3)/(sqrt(9-x^(2)))dx

" (a) "int(dx)/(sqrt(9-x^(2)))

int(1)/(sqrt(9x-4x^(2)))dx is equal to

int(dx)/(sqrt(9-25x^(2)))

int(dx)/(sqrt(9x^(2)-4))

int(dx)/(sqrt(x^(2)-9))