Home
Class 12
MATHS
int(sinx)/(sqrt(4+cos^(2)x))dx...

`int(sinx)/(sqrt(4+cos^(2)x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x}{\sqrt{4 + \cos^2 x}} \, dx \), we will use a substitution method. Here are the steps: ### Step 1: Substitution Let \( t = \cos x \). Then, the derivative of \( t \) with respect to \( x \) is: \[ \frac{dt}{dx} = -\sin x \quad \Rightarrow \quad \sin x \, dx = -dt \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ \int \frac{\sin x}{\sqrt{4 + \cos^2 x}} \, dx = \int \frac{-dt}{\sqrt{4 + t^2}} \] ### Step 3: Factor Out the Negative Sign We can factor out the negative sign: \[ = -\int \frac{dt}{\sqrt{4 + t^2}} \] ### Step 4: Use the Integral Formula The integral \( \int \frac{dt}{\sqrt{a^2 + t^2}} \) has a known result: \[ \int \frac{dt}{\sqrt{a^2 + t^2}} = \ln |t + \sqrt{t^2 + a^2}| + C \] Here, \( a = 2 \). Therefore, we can write: \[ -\int \frac{dt}{\sqrt{4 + t^2}} = -\left( \ln |t + \sqrt{t^2 + 4}| + C \right) \] ### Step 5: Substitute Back for \( t \) Now, substituting back \( t = \cos x \): \[ = -\left( \ln |\cos x + \sqrt{\cos^2 x + 4}| + C \right) \] ### Step 6: Simplify the Expression This can be simplified to: \[ = -\ln |\cos x + \sqrt{\cos^2 x + 4}| + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{\sin x}{\sqrt{4 + \cos^2 x}} \, dx = -\ln |\cos x + \sqrt{\cos^2 x + 4}| + C \] ---

To solve the integral \( \int \frac{\sin x}{\sqrt{4 + \cos^2 x}} \, dx \), we will use a substitution method. Here are the steps: ### Step 1: Substitution Let \( t = \cos x \). Then, the derivative of \( t \) with respect to \( x \) is: \[ \frac{dt}{dx} = -\sin x \quad \Rightarrow \quad \sin x \, dx = -dt \] ...
Promotional Banner

Topper's Solved these Questions

  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14A|40 Videos
  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (i) int(sinx)/(sqrt(4cos^(2)x-1))dx (ii) int(sec^(2)x)/(sqrt(tan^(2)x-4))dx

int(sinx)/(sqrt(cos2x))dx=

Evaluate: int (sinx)/(sqrt(36-cos ^(2)x))dx

int(sinx dx)/((3+cos^(2)x))=

Evaluate: int(cos x)/(sqrt(4+sin^(2)x))dx

Evaluate: int(cos x)/(sqrt(4-sin^(2)x))dx

Evaluate : (i) int(sinx)/((1-4cos^(2)x))dx (ii) int("cosec"^(2)x)/((1-cot^(2)x))dx

int(1)/(sqrt(sinx cos^(3)x))dx=

int(sinx)/((1+cos^(2)x))dx

int(sinx)/(3+4cos^(2)x)dx