Home
Class 12
MATHS
int(e^(x))/(sqrt(4+e^(2x)))dx...

`int(e^(x))/(sqrt(4+e^(2x)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{e^x}{\sqrt{4 + e^{2x}}} \, dx\), we will use a substitution method. Here are the steps to solve the integral: ### Step 1: Substitution Let \( t = e^x \). Then, the differential \( dt = e^x \, dx \) or \( dx = \frac{dt}{t} \). ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ \int \frac{e^x}{\sqrt{4 + e^{2x}}} \, dx = \int \frac{t}{\sqrt{4 + t^2}} \cdot \frac{dt}{t} = \int \frac{1}{\sqrt{4 + t^2}} \, dt \] ### Step 3: Identify the Integral Form The integral \(\int \frac{1}{\sqrt{a^2 + x^2}} \, dx\) is a standard form, which equals \(\ln |x + \sqrt{x^2 + a^2}| + C\). Here, \( a^2 = 4 \) (thus \( a = 2 \)) and \( x = t \). ### Step 4: Evaluate the Integral Using the standard form: \[ \int \frac{1}{\sqrt{4 + t^2}} \, dt = \ln |t + \sqrt{t^2 + 4}| + C \] ### Step 5: Back Substitute Now, we substitute back \( t = e^x \): \[ \ln |e^x + \sqrt{(e^x)^2 + 4}| + C = \ln |e^x + \sqrt{e^{2x} + 4}| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{e^x}{\sqrt{4 + e^{2x}}} \, dx = \ln \left( e^x + \sqrt{e^{2x} + 4} \right) + C \]

To solve the integral \(\int \frac{e^x}{\sqrt{4 + e^{2x}}} \, dx\), we will use a substitution method. Here are the steps to solve the integral: ### Step 1: Substitution Let \( t = e^x \). Then, the differential \( dt = e^x \, dx \) or \( dx = \frac{dt}{t} \). ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14A|40 Videos
  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos

Similar Questions

Explore conceptually related problems

int(2e^(x))/(sqrt(4-e^(2x)))dx

int(e^(x))/(sqrt(9-e^(2x)))dx

int(e^(2x))/(sqrt(1-e^(2x)))dx

int(e^(x))/(sqrt(e^(2x)-1))dx=

Evaluate int(e^(x))/(sqrt(1-e^(2x)))dx

int(e^(x))/(sqrt(1+e^(x)))dx=?

int(e^(x)dx)/(sqrt(6-4e^(x)))

int(e^(5x))/(sqrt(e^(5x)+1))dx=

Evaluate: (i) int(e^x)/(sqrt(5-4\ e^x-e^(2x)))\ dx (ii) int(cosx)/(sqrt(sin^2x-2sinx-3))\ dx

inte^(2x)/(4sqrt(e^x+1))dx