Home
Class 12
MATHS
int(dx)/(sqrt(2x^(2)+3x-2))...

`int(dx)/(sqrt(2x^(2)+3x-2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{dx}{\sqrt{2x^2 + 3x - 2}}, \] we will follow these steps: ### Step 1: Simplify the expression under the square root First, we factor out 2 from the expression inside the square root: \[ \sqrt{2x^2 + 3x - 2} = \sqrt{2\left(x^2 + \frac{3}{2}x - 1\right)} = \sqrt{2} \sqrt{x^2 + \frac{3}{2}x - 1}. \] ### Step 2: Rewrite the integral Now we can rewrite the integral as: \[ \int \frac{dx}{\sqrt{2} \sqrt{x^2 + \frac{3}{2}x - 1}} = \frac{1}{\sqrt{2}} \int \frac{dx}{\sqrt{x^2 + \frac{3}{2}x - 1}}. \] ### Step 3: Complete the square Next, we complete the square for the quadratic expression \(x^2 + \frac{3}{2}x - 1\): \[ x^2 + \frac{3}{2}x - 1 = \left(x + \frac{3}{4}\right)^2 - \left(\frac{3}{4}\right)^2 - 1. \] Calculating \(\left(\frac{3}{4}\right)^2\): \[ \left(\frac{3}{4}\right)^2 = \frac{9}{16}. \] Thus, we have: \[ x^2 + \frac{3}{2}x - 1 = \left(x + \frac{3}{4}\right)^2 - \left(\frac{9}{16} + 1\right) = \left(x + \frac{3}{4}\right)^2 - \frac{25}{16}. \] ### Step 4: Substitute back into the integral Now we substitute this back into the integral: \[ \frac{1}{\sqrt{2}} \int \frac{dx}{\sqrt{\left(x + \frac{3}{4}\right)^2 - \left(\frac{5}{4}\right)^2}}. \] ### Step 5: Use a trigonometric substitution We can use the substitution \(x + \frac{3}{4} = \frac{5}{4} \sec(\theta)\). Then, \(dx = \frac{5}{4} \sec(\theta) \tan(\theta) d\theta\). Substituting these into the integral gives: \[ \frac{1}{\sqrt{2}} \int \frac{\frac{5}{4} \sec(\theta) \tan(\theta) d\theta}{\sqrt{\left(\frac{5}{4}\right)^2 \sec^2(\theta) - \left(\frac{5}{4}\right)^2}} = \frac{1}{\sqrt{2}} \int \frac{\frac{5}{4} \sec(\theta) \tan(\theta) d\theta}{\frac{5}{4} \sqrt{\sec^2(\theta) - 1}}. \] ### Step 6: Simplify the integral This simplifies to: \[ \frac{1}{\sqrt{2}} \cdot \frac{5}{4} \int d\theta = \frac{5}{4\sqrt{2}} \theta + C. \] ### Step 7: Back substitute Now we need to back substitute for \(\theta\): \[ \theta = \sec^{-1}\left(\frac{4}{5}(x + \frac{3}{4})\right). \] Thus, the final answer is: \[ \frac{5}{4\sqrt{2}} \sec^{-1}\left(\frac{4}{5}(x + \frac{3}{4})\right) + C. \]
Promotional Banner

Topper's Solved these Questions

  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14A|40 Videos
  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(x^(2)-3x+2))

int(1)/(sqrt(2x^(2)+3x-2))dx

int(dx)/(sqrt(3x^(2)-5))

int(dx)/(sqrt(2x^2+3x+5))=

int(dx)/(sqrt(1+2x-3x^(2)))

Find the following integrals : (i) int(dx)/(x^(2)-6x+13)int(dx)/(3x^(2)+13x-10)int(dx)/(sqrt(5x^(2)-2x))

int(x+1)/(sqrt(2x^(2)+x-3))dx

int(dx)/(sqrt((a^2+x^2)^3))=

int(dx)/(sqrt(3x^(2)+4))

Find int(dx)/(sqrt(3-2x-x^(2)))